

REPORT ON DETAIL SEISMIC ASSESSMENT & RETROFIT DESIGN OF WESTERN REGIONAL HOSPITAL, POKHARA, NEPAL

JULY, 2018

Prepared By

Nepal Health Sector Support Programme - III (NHSSP-III)

Ministry of Health and Population Ram Shah Path, Kathmandu

EXECUTIVE SUMMARY

Introduction

This report summarizes the detailed seismic assessment and retrofitting design of the buildings of Western Regional Hospital (WRH), Pokhara – a priority hospital for retrofitting and rehabilitating works selected under the Nepal Health Sector Support Programme (NHSSP) Health Infrastructure work stream. The retrofitting process involves the selection of priority hospitals, collection and review of existing drawings and documents, on-site field condition assessment, materials testing - including non-destructive (NDT) and destructive (DT) testing- geotechnical investigations, detailed seismic assessment, and design of suitable retrofitting solutions.

The report briefly describes the condition assessment (qualitative assessment) of the buildings and its preliminary recommendations, as well as results of geotechnical investigations of the hospital site, NDT and DT testing of building materials. Based on these studies, a detailed seismic assessment (quantitative assessment) of each building was conducted, using numerical analysis to identify potential structural weakness and relative vulnerability. This was followed by the selection and design of retrofitting options.

Condition assessment

The hospital campus consists of sixteen building blocks from 10 - 34 years old. Of these, nine are unreinforced stone masonry buildings, while the remainder are RCC framed buildings with stone masonry and/or hollow/brick concrete blocks (for details see Chapter 3 of this report). A preliminary level of condition assessment (qualitative assessment) was performed through visual inspection by the expert team, with on-site verification and desk review of previous study documents and existing as-built drawings. The major conclusions and recommendations based on these results are as follows:

- The impact of the 2015 Gorkha Earthquake appears to have been minor.
- Repair and maintenance of the buildings appear to be inadequate, leading to degradation of the built fabric.
- There are no expansion or construction joints between. Most of these joints were either connected or filled later to resolve drainage and seepage of water inside the blocks during rainy season
- Most of the buildings are suitable for retrofitting, other than a few minor structures attached to the main blocks., if these buildings meet their intended functional requirements as per current standards, and also if the buildings meet their hospital's Master Plan requirements. However, the final decision shall be made only after the detailed seismic assessment with upgrading functional requirements of the buildings and economic considerations for retrofitting of these buildings

Detailed Seismic Assessment - Quantitative Assessment

The detailed seismic assessment (DSA) was performed to determine the probable strength of the lateral load resisting system and to compare with expected seismic demand on the members. It is basically based on structural modeling and analysis using commercial structural analysis commercial structural analysis Finite element based ETABS software. Both static (linear static) and dynamic (response spectrum method) analysis were performed during numerical analysis based on Nepal's building code and Indian Standard (IS) codes. Non-structural components were assessed for position pretensions to prevent them from any potential falling hazards during seismic event.

Recommended works

After the detailed seismic assessment and analysis, it was concluded that existing four RCC Framed buildings – Laboratory Block, Emergency– I, Mortuary, and Abortion Block – and a masonry building - Laboratory block are found to be safe and do not need any retrofitting/strengthening works for exiting condition without further changes to the civil works, although regular repair and maintenance will still be required. It is recommended that the Diabetes Block needs to be demolished and rebuilt. Deficiencies in the remaining building blocks noted during the detailed seismic assessment are summarized below:

Remaining RCC Framed Buildings:

- The remaining RCC buildings did not comply with the codes' requirements for storey drift. The seismic gap required between adjacent blocks, especially Computed Tomography (CT)scan and Ear Nose Throat (ENT) Blocks, was found to be insufficient.
- Most structural members failed to meet checking the earthquake demand capacity ratio as required by the codes.

Masonry Buildings:

- Most of the masonry buildings are safe in storey drift.
- The buildings are not safe in tensile and shear in both in-plane and out of plane earthquake loading while found to be safe in compression.

Retrofitting solutions

Two main retrofitting options were put forward to increase lateral stiffness of buildings: first, the use of Reinforced Cement Concrete (RCC) shear walls, and second, the application of the splint and bandage technique. After consultation meetings with the Department of Urban Development and

Building Construction (DUDBC) in February 2018, it was agreed to apply RCC shear walls with column jacketing for use on RCC framed buildings. and the splint and bandage technique together with wall jacketing, will be used for masonry buildings.

To address the above mentioned deficiencies as well as functional requirements, the following retrofitting solutions for each block are recommended:

S.No.	Building Blocks	Proposed Retrofitting Solutions
Unreir	forced Masonry Build	ling Blocks
1	Maternity	Separation of buildings introducing two seismic gaps, reduce opening, develop load path, splint and bandage with wall jacketing, introduce diaphragm at roof level, introduce steel frame at new atrium area and gable wall, brace parapet walls, and anchorage of slate at roof
2	Medical	Separation of buildings introducing a seismic gap, increase wall density, reduce opening, develop load path, and splint and bandage with wall jacketing
3	Pediatric	Separation of buildings introducing a seismic gaps, increase wall density, reduce opening, develop load path, and splint and bandage with wall jacketing
4	OPD	Splint and bandage with wall jacketing and steel bracing of parapet walls
5	Pharmacy	Splint and bandage with wall jacketing, increasewall density, reduce opening, and steel bracing of parapet walls
6	Dental	Splint and bandage with wall jacketing, shoe anchorage bracing of parapet walls, and introduce seismic gap
7	Emergency - II	Splint and bandage with wall jacketing, develop load path, demolish roof structure and walls at first floor and replace with light structures
8	Link corridor	Introduce seismic gaps, and steel stone column jacketing

RCC F	RCC Framed Building Blocks		
	CT-Scan	RCC shear wall with column jacketing & addition of a columns for load path	
2	ENT	RCC shear wall with column jacketing	
3	Ramp	Introduce new seismic gap, install steel framing up to slab level, replace RCC roof structure with light roofing	
4	Nutrition	Steel column jacketing	
5	Link corridor	Steel column jacketing with cross bracing	
6	Mortuary	Steel column jacketing	
7	Emergency - I	RCC column jacketing	

The retrofitting solutions of the last two blocks - Emergency–I and Mortuary, which were found to be safe during detailed seismic assessment, are proposed for the functional requirements – addition of a floor in these buildings as per Hospital Management requests during last consultation meeting at Pokhara.

TABLE OF CONTENT

EXEC	CUTIVE SUMMARY	I
I	INTRODUCTION	I
1.1	BACKGROUND	I
1.2	OBJECTIVES	2
1.3	METHODOLOGY	2
2	DESCRIPTION OF HOSPITAL	4
2.1	SITE LOCATION	4
2.2	TYPOLOGY OF BLOCKS IN HOSPITAL	4
2.2.	I TI-RC FRAMED BUILDING	5
2.2.	2 T2- UNREINFORCEMNET MASONRY BUILDING	5
3	CONDITIONAL ASSESSMENT	8
3.1	BACKGROUND	8
3.2	METHODOLOGY	8
3.2.	I COLLECTION AND REVIEW OF PAST DOCUMENTS	8
3.2.	2 IN-SITE CONDITIONAL ASSESSMENT	8
3.3	SUMMARY OF FINDINGS	9
3.3.	I WATER SEEPAGE	9
3.3.	2 CORROSION	9
3.3.	3 CRACKS	10
3.3.	4 POUNDING EFFECTS	11
3.3.	5 POOR MAINTENANCE	11
3.3.	6 LOAD PATH & CONFIGURATION	12
3.3.	7 SEISMIC SEPERATION	12
3.3.	8 NON-STRUCTURES COMPONETS	13
3.4	CONCLUSION	14
3.5	RECOMMENDATION FOR FUTURE WORKS	15
4	ON-SITES INVESTIGATION	16
4.1	NON-DESTRUCTIVE & DESTRUCTIVE TESTING	16
4.1.	I IN-SITU BED JOINT SHEAR TEST	16
4.1.	2 STONE COMPRESSIVE STRENGTH TEST	18
4.1.	3 CORE TEST FOR COMPRESSIVE STRENGTH OF CONCRETE	19
4.1.	4 PENETROMETER TEST	20
4.2	GEOTECHNICAL INVESTIGATION	21

4.3	FOUNDATION EXPLORATION	22
4.4	FOUNDATION CHECK	24
5	DETAILED SEISMIC ASSESSMENT FOR RC FRAME BUILDING	26
5.I	BACKGROUND	26
5.2	METHODOLOGY	26
5.3	MATERIAL PARAMETER	26
5.4	codes and standards	27
5.5	LOADING	28
5.5	I DEAD LOAD	28
5.5	.2 LIVE LOADS	28
5.5	.3 SEISMIC LOAD& ANALYSIS METHOD	29
5.6	LOAD COMBINATIONS	34
5.7	STRUCTURAL MODELLING	34
5.8	ANALYSIS METHOD	36
5.9	result and discussion	36
5.9	.I SEISMIC DEMAND	36
5.9	2 MODAL TIME PERIOD AND MASS PARTICIPATION	38
5.9	.3 STOREY DISPLACEMENT AND DRIFT	38
5.9	.4 CHECK FOR ADJACENT BUILDINGS	40
5.9	.5 CHECK FOR TORSIONAL IRREGULARITY	40
5.9	.6 SOFT STOREY	41
5.9	.7 MASS IRREGULARITY	42
5.9	.8 STRENGTH RELATED CHECKS	42
5.9	.9 COLUMNS CAPACITY DEMAND CHECK	43
5.1	0 EQUIVALENT DIAGONAL STRUT METHOD:	45
5.1	0. I RESULT & DISCUSSION 46	
5.I	I FINDINGS AND RECOMMENDATIONS	49
6	RETROFIT DESIGN FOR RC FRAME BUILDING	50
6.1	RETROFITTING STRATEGY	50
6.1	.I IMPROVING REGULARITY	50
6.1	.2 STRENGTHENING	50
6.1	.3 INCREASING DUCTILITY	50
6.2	SELECTION OF RETROFIT STRATEGIES	50
6.3	RETROFIT DESIGN	51
6.4	RETROFIT OPTIONS	51

6.4.	I ADDITION OF SHEAR V	VALL:		51
6.4.	2 CONCRETE COLUMN J	ACKETING:		51
6.5	ANALYSIS RESULT AND	DISCUSSION		51
6.5.	I SEISMIC DEMAND			51
6.5.2	2 MODAL TIME PERIOD A	ND MASS PARTICIPATI	ON	53
6.5.	STOREY DISPLACEMEN	T AND DRIFT		53
6.5.4	4 CHECK FOR ADJACENT	" BUILDINGS		55
6.5.	5 CHECK FOR TORSION	AL IRREGULARITY		55
6.5.	S COLUMNS CAPACITY E	DEMAND CHECK		56
6.6	DESIGN OF SHEAR WA	LL		57
6.7	CONCLUSION AND RE	COMMENDATION		60
7	DETAIL SEISMIC ASS	ESSMENT FOR MASC	ONRY BUILDING	62
7.1	BACKGROUND			62
7.2	METHODOLOGY			62
7.3	MATERIAL PARAMETER			62
7.4	CODE AND STANDARE)		64
7.5	LOAD AND LOAD CAS	ES		64
7.5.	I DEAD LOAD			64
7.5.2	2 LIVE LOADS			65
7.6	seismic load			66
7.6.	I AS PER NBC 105			66
7.6.	2 AS PER IS1893:2002			66
7.7	LOAD COMBINATIONS			70
7.8	STRUCTURAL MODELLI	NG		70
7.9	METHOD OF ANALYSIS			71
7.10	CHECKFOR MASONRY	STRUCTURE		71
7.11	RESULT AND DISCUSSIO	NC		72
7.11	. I SEISMIC			DEMAND
	72			
7.11	.2STOREY	DISPLACEMENT	AND	DRIFT
	73			
7.11	.3STRESS			CHECKS
	74			
7.12	FINDINGS AND RECOM	IMENDATIONS		89
8	RETROFIT DESIGN F	OR MASONRY BUIL	DING	90

	8.1	RETROFITTING STRATEGY	90
	8.1.1	IMPROVING REGULARITY	90
	8.1.2	2 STRENGTHENING	90
	8.1.3	INCREASING DUCTILITY	90
	8.2	SELECTION OF RETROFIT STRATEGIES	90
	8.3	RETROFIT DESIGN	91
	8.4	CONCLUSION AND RECOMMENDATION	97
ç)	NHSSP'S RESPONSE ON REVIEWERS' COMMENTS & SUGGESTION	98
I	0	ANNEXES	112

LIST OF FIGURE

Figure 1: Flowchart of overall process of detail seismic assessment and retrofitting design	2
Figure 2: Western Regional Hospital Site Plan	4
Figure 3: Building Typologies in Western Regional Hospital	5
Figure 4: Serious seepage issues inside Emergency Block & OPD Block	9
Figure 5: Corrosion cracks in Emergency Block & OPD Block	9
Figure 6: Wall cracks in Emergency Block & OPD Block	10
Figure 7: Wall and Floor cracks in Maternity Block	10
Figure 8: Vertical Cracks on Masonry Wall (Sealed area of Seismic Separation)	11
Figure 9: Pounding Effect at ENT and CT Scan Block Connection	11
Figure 10: Poor Maintenance	12
Figure 11: a) Plan of Maternity Block. b) A disconnect load path in Emergency Block	12
Figure 12: Discontinuity Seismic Separation	13
Figure 13: Condition of Non Structural Components (Utility Services)	14
Figure 14: Photograph showing Bed Joint Shear Test	17
Figure 15: Photograph showing Compressive Strength Test of Stone	18
Figure 16: Photograph showing Concrete Core Test	19
Figure 17: Location of Drill Holes for Geotechnical Investigation	21
Figure 18: Foundation Exploration of Masonry Block	22
Figure 19: 3D Model of Building	35
Figure 20: Storey Displacement Check	39
Figure 21: Demand Capacity Ratio of Structural Member (Column)	44
Figure 22: Demand Capacity Ratio of Structural Member (Column)	44
Figure 23: Storey Displacement Comparison	54
Figure 24: Demand Capacity Ratio of Structural Member (Column) after Retrofit	56
Figure 25: Demand Capacity Ratio of Structural Member (Column) after retrofit	57
Figure 26: 3D Model of Building	71
Figure 27 : Storey Displacement Check	73

LIST OF TABLE

Table I: Building Typology	6
Table 2: Detail Description of Buildings	7
Table 3: Summary of Bed Joint Shear Test	17
Table 4: Summary of Compressive Strength Test of Stone	18
Table 5: Summary of Core Cutting Test	19
Table 6: Penetrometer Tests of Cement Mortar of Existing Structures	20
Table 7: Bearing Capacity at Hospital Site	21
Table 8: Findings of Foundation Excavation	23
Table 9: Parameter Adopted from NDT Test	27
Table 10: Mechanical Properties of Concrete (As Per IS Code)	27
Table 11: Unit Weight of Materials Used	28
Table I 2: Live Load used as per IS 875 (part II) – 1987	29
Table 13: Load factors for seismic weight	31
Table 14: Design Horizontal Seismic Coefficient as per IS 1893:2002(CT scan Block)	32
Table 15: Design Horizontal Seismic Coefficient as per NBC 105 (CT scan Block)	33
Table 16: Seismic Demand of Building	37
Table 17: Modal time period and mass participation	38
Table 18: Storey Drift Calculations	38
Table 19: Ultimate Deflection	39
Table 20: Requirement of Seismic Gap	40
Table 21: Requirement of Seismic Gap	40
Table 22: Torsional Irregularity Check	41
Table 23: Soft Storey Check for X-Direction	41
Table 24: Soft Storey Check for Y-Direction	41
Table 25: Mass irregularity Check	42
Table 26: Column PMM Envelope Check	43
Table 27: Seismic Demand of Building after retrofit	52
Table 28: Modal time period and mass participation after retrofit	53
Table 29: Storey Drift Calculations after retrofit	54
Table 30: Requirement of Seismic Gap after retrofit	55
Table 31: Torsional Irregularity Check after retrofit	56
Table 32: Parameter Adopted from NDT/DT Test	63
Table 33: Mechanical Properties of Stone Masonry	63
Table 34: Mechanical Properties of Concrete (As Per IS Code)	64

Table 35: Unit Weight of Materials Used	65
Table 36: Live Load used as per IS 875 (part II) – 1987	65
Table 37: Load factors for seismic weight	67
Table 38: Design Horizontal Seismic Coefficient as per NBC-105-1994 (OPD Block II)	68
Table 39: Design Horizontal Seismic Coefficient as per IS 1893:2002 (OPD Block II)	69
Table 40: Seismic Demand of Building	72
Table 41: Storey Drift Calculations	73
Table 42: Ultimate Deflection	74
Table 43: Requirement of Seismic Gap	74

I INTRODUCTION

I.I BACKGROUND

The Nepal Health Sector Support Program III (NHSSP-III) is an initiative of the Nepal Ministry of Health (MoH), financed by the UK Department for International Development (DFID). The NHSSP is intended to support the goals of Nepal's National Health Sector Strategy (NHSS), and assist the MoH in building a resilient health system to provide good quality health services for all.

The program has five work streams: health policy and planning, procurement and public financial management, service delivery, evidence and accountability, and health infrastructure.

The Health Infrastructure work stream of the NHSSP has three Key Performance Areas (KPAs):

KPA I: Building a strong policy environment, to ensure that the MoH and DUDBC adopt and implement relevant codes, standards, and guidelines for construction and maintenance of health facilities and infrastructure

KPA 2: Enhancing the capacity of the MoH, DUDBC, and the private sector (including contractors and construction professionals) to be efficient, technically competent, and capable of implementing resilient design, construction, and maintenance.

KPA 3: Building resilient and effective health infrastructure and ensuring that health infrastructure is retrofitted, rehabilitated, maintained, and monitored in earthquake affected and vulnerable districts, and that facilities are resilient to future seismic shocks, environmental impacts, and other natural disasters.

Under KPA 3, at least two hospitals will be retrofitted and rehabilitated, and be treated as demonstration models to inform the roll-out of the retrofitting and rehabilitation programme and design work in the future. Based on multi-criteria and scoring system developed by the Health Infrastructure team, level of future earthquake risk based on geographical location, accessibility by the general population, hub hospitals status for future emergencies, type and range of hospital services provided, utilization rate based on MoHP statistics, and location and catchment area Bhaktapur hospital and Western Regional hospital are selected under KPA 3 for seismic assessment and retrofitting design.

This report summarizes the detail seismic assessment of Western Regional Hospital, Pokhara, and thereby retrofitting design and recommendation as a result of the study of design and drawing, physical verification, structural analysis and evaluation in reference with standards, codes and practice and earthquake resistant design criteria.

I.2 OBJECTIVES

The main objective of the task is to evaluate the seismic safety of the existing buildings with detail retrofitting design.

Other specific objectives are:

- To perform material test and geotechnical investigation based on recommendation drawn by condition assessment.
- To perform detail seismic analysis using structural analysis software to better understands the building behavior against the lateral forces.
- To determine the probable strength of the lateral load resisting system and compare with expected seismic demand on the members.
- To recommend either retrofitting is required or not. If required, further detail retrofitting design is performed.

I.3 METHODOLOGY

Undertaking retrofit works is far from being a single activity; rather, it is a feat of multitasking accomplishments, each of which is essential in order to achieve successful execution of a retrofit project. The proposed retrofitting procedure in the program includes a net of activities as shown in Figure 1.

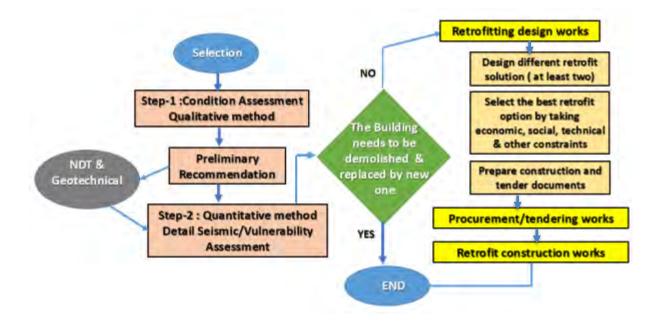


Figure 1: Flowchart of overall process of detail seismic assessment and retrofitting design

The major activities/steps of the procedure are as follows

- I. Selection of priority hospitals
- 2. Condition Assessment
- 3. Onsite Investigation
- 4. Details seismic assessment
- 5. Retrofitting design
- 6. Procurement/tendering works
- 7. Retrofitting construction works

This report includes only the steps 2 to 5. The details discussions of these steps are presented in the following sections.

2 DESCRIPTION OF HOSPITAL

Western Regional Hospital consists of seventeen different blocks of two different building typology. These blocks are constructed using various gravity and lateral force resisting systems and thus, must be treated differently and grouped into the typologies outlined in 2.2. The buildings vary considerably in size, usage requirements and age as well, some buildings being only ten years old while the oldest were constructed 34 years ago. The buildings are clustered together, and most blocks are connected by expansion joints, typically found at the ground floor but sometimes at upper floors as well.

2.1 SITE LOCATION

Western Regional Hospital is located in Kaski District, Western Development Region, Nepal. The latitude of the hospital is 28° 12' 44.7156" N and its longitude is 83° 59' 52.4796" E. The location site plan and master plan (blown up) of the hospital are shown in Figure 2 and Figure 3, respectively.

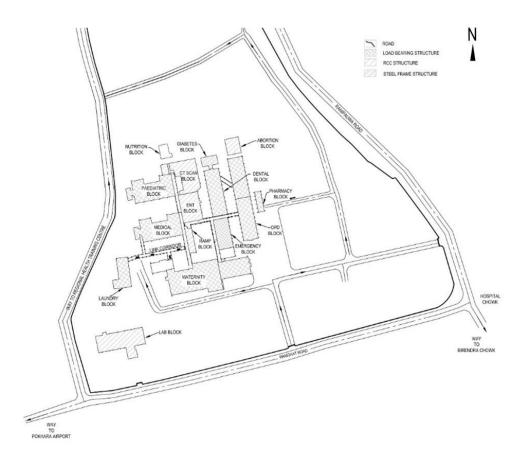


Figure 2: Western Regional Hospital Site Plan

2.2 TYPOLOGY OF BLOCKS IN HOSPITAL

After analyzing the building typology, it is identified that there are different types of gravity systems, lateral load carrying systems, floor systems and materials used in the same building. Some buildings have even different gravity systems at different stories. For the sake of the simplification in understanding the building configuration, two different typologies – RC frame and Unreinforced masonry (URM) have been defined.

2.2.1 TI-RC FRAMED BUILDING

This type of building includes only reinforced concrete frame as a gravity and lateral system with infill wall of stone, brick and hollow concrete block. The floor system is RC slab

2.2.2 T2- UNREINFORCEMNET MASONRY BUILDING

This type of building has unreinforced stone masonry in cement mortar as a gravity and lateral system. The floor system is RC slab. In some buildings, few frame structure (reinforced concrete column) are presented in some location with stone masonry load bearing system

Majority of the hospital building comprises stone as infill walls / load bearing walls.

Table I shows building typology within the hospital campus.

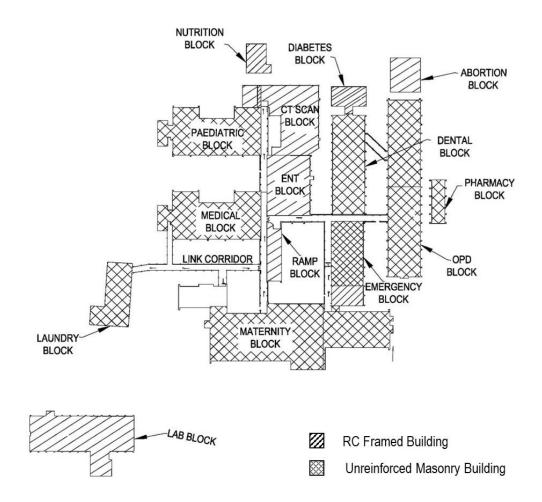


Figure 3: Building Typologies in Western Regional Hospital

C N I -	RC Framed with ordinary masonry infill wall Panels	
S.No	Block	Wall Construction
1	Abortion Block	Brick masonry with cement mortar
2	ENT Block	Stone masonry with cement mortar
3	CT Scan	Stone masonry with cement mortar
4	Link Corridor	N/A
5	Nutrition	Stone masonry with cement mortar
6	Ramp	Brick masonry with cement mortar
7	Lab	Stone masonry with cement mortar

S.No	Load bearing masonry buildings with reinforced concrete floor slab		
	Block	Wall Construction	
I	Diabetes	Stone masonry building with cement mortar and some reinforced concrete members	
2	Emergency	Stone masonry building with cement mortar	
3	Dental	Stone masonry building with cement mortar and steel roof	
4	Maternity Block	Stone masonry building with cement mortar	
5	Laboratory	Dual structural system: stone masonry load bearing system and RC frame system	
6	Medical	Stone masonry building with cement mortar	
7	OPD	Stone masonry building with cement mortar	
8	Pharmacy	Stone masonry building with cement mortar	
9	Pediatric	Stone masonry building with cement mortar	

Further details of majority of the buildings at Western Regional Hospital campus are presented in Table 2 below.

S. No.	Building Name	# of Stories	Gravity System	Lateral System	First Floor Wall System	Second Floor Wall System	1st Floor System	2nd Floor System	Year of Construction	Age (Yrs)
1	Abortion Block	1	RC Frame with brick infill	RC Frame with Brick Infill	Stone Masonry wall /Infill & Brick Masonry infill	-	RC Slab		2062 BS	12
2	OPD Block	2	Stone Masonry in cement mortar & RC (First Floor) , Frame & Steel (2nd Floor)	Stone Masonry & RC (First Floor), Frame & Brick Masonry (2nd Floor)	Stone Masonry wall & Stone Masonry infill	Brick Masonry Infill	RC Slab	Light Steel Structure	2040BS	34
3	Pharmacy Block	1	Stone Masonry	Stone Masonry	Stone Masonry & Stone Masonry infill	-	RC Slab		2040BS	34
4	Diabetes Block	1	Stone Masonry in cement mortar, Steel Post and Brick Masonry in cement mortar	Stone Masonry /Brick masonry and Steel Post	Stone Masonry /Infill & Brick Masonry infill	-	Light Steel Structure		2040BS	34
5	Dental Block	2	Stone Masonry in cement mortar	Stone Masonry	Stone Masonry wall	Stone Masonry wall	RC Slab	RC Slab	2040BS	34
6	Emergency Block	2	Stone Masonry in cement mortar (First Floof) RC with brick infill in cement mortar (Second Floor)	Stone Masonry, Frame & Brick Masonry (2nd Floor)	Stone Masonry wall	Brick Masonry Infill	RC Slab	Light Steel + RC Slab	2040BS	34
7	Maternity Block	2	Stone Masonry in cement mortar	Stone Masonry in cement mortar	Stone Masonry wall	Stone Masonry wall	RC Slab	Timber + Slate	2030BS	44
8	Nutrition Block	2	RC Frame with stone masonry infill (outer wall) and RC Frame with brick masonry infill (Internal wall)	RC Frame with stone and brick infill	Stone Infill/ Internal Brick Infill	Stone Infill/ Internal Infill Brick	RC Slab	RC Slab	2064BS	10
9	CT Scan Block	2	RC Frame with Stone Infill	RC Frame with Stone Infill	Stone Masonry Infill	Stone Masonry	RC Slab	RC Slab	2055BS	19
10	Kidney Stone Block	2	RC Frame with Stone Infill	RC Frame with Stone Infill	Stone Masonry Infill	Stone Masonry	RC Slab	RC Slab	2064BS	10
11	ENT Block	2	RC Frame with Stone Infill	RC Frame with Stone Infill	Stone Masonry Infill	Stone Masonry Infill	RC Slab	RC Slab	2040BS	34
12	Ramp	2	RC Frame with Brick and stone Infill	RC Frame with Stone Infill	Brick/Stone Infill	Brick/Stone Masonry Infill	RC Slab (Inclined)	RC Slab (Inclined)	2040BS	34
13	Pediatric Block	2	Stone Masonry in cement mortar	Stone Masonry in cement mortar	Stone Masonry wall	Stone Masonry wall	RC Slab	RC Slab (Inclined)	2040BS	34
14	Medical Block	2	Stone Masonry in cement mortar	Stone Masonry in cement mortar	Stone Masonry wall	Stone Masonry wall	RC Slab	RC Slab (Inclined)	2040BS	34
15	Link Corridor	2	RC Frame without in fill (First Floor) and Steel Frame (Second Floor)	RC Frame without in fill (First Floor) and Steel Frame (Second Floor)	No Infill	No Infill	RC Slab	Steel Truss	2050/2060	24/14
16	Laundry Block	2	Stone Masonry in cement mortar (First Floor) & RC Frame with stone infill (second Floor)	Stone Masonry in cement mortar (First Floor) & RC Frame with stone infill (second Floor)	Stone Masonry Wall	Stone Masonry Infill Wall	RC Slab	RC Slab	2040/2055 BS	34/19
17	Lab Block	2	RC Frame with Stone Infill	RC Frame with Stone Infill	Stone Infill Wall	Stone Infill wall	RC Slab	Steel Truss	2050BS	24

Table 2: Detail Description of Buildings

3 CONDITIONAL ASSESSMENT

3.1 BACKGROUND

The condition assessment of the building is a preliminary assessment of existing building of the prioritized hospital. This qualitative assessment of the buildings includes visual inspection from the expert team with on-site verification and desk review of the past studies documents and existing asbuilt drawings. This section summary the methodology of condition assessment and its findings and recommendations.

3.2 METHODOLOGY

The methodology for condition assessment includes the following components

3.2.1 COLLECTION AND REVIEW OF PAST DOCUMENTS

The available as-built drawings of the hospital buildings that prepared by DFID's Hospital retrofitting project were collected from concerned authority and reviewed to understand the building's details and complexity for on-site assessment. The as-built drawings were verified in the field during assessment. Besides, the available past studies reports, data, maps and other information related to the hospital buildings were collected from concerning authority and then review these documents. The NHSSP team has reviewed all collected documents and develops check-list for the assessment before field visit. The reviewed documents are presented in references

3.2.2 IN-SITE CONDITIONAL ASSESSMENT

Different teams of Engineers from NHSSP, MoH and DUDBC have conducted on-site condition assessment of the buildings of the Hospitals in different time. On Sep, 2018, a team led by International Expert Mr Jitendra Bothara from Miyamoto New Zealand was conducted on-site structural condition assessment. The on-site assessment was one of a capacity enhancement activity of the programme for technical staffs of the MoH and DUDBC. The assessment strategy was developed based on an initial appraisal of the complexity of the Building and reviewed it as the assessment progresses. Besides, three different engineer team from NHSSP, PCU and DUDBC were assessed the buildings with addition field verification during NDT/DT and details assessment with retrofitting design review process.

During these processes, the buildings were observed for common deficiencies such as structural member's cracks, water seepage, spelling of concrete, exposure of rebar, rusting of rebar, settlements in grounds, as well as other structural and non-structural deficiencies.

3.3 SUMMARY OF FINDINGS

The details condition assessment of each block is presented in Condition Assessment Report (Annex). Some of the common observations made during field inspection are presented as follows.

3.3.1 WATER SEEPAGE

Most of the buildings of WRH have serious seepage issues due poor drainage system and lack of maintenance as shown in the following photos.

Figure 4: Serious seepage issues inside Emergency Block & OPD Block

3.3.2 CORROSION

Due to seepage and lack of timely maintenance, there are some corrosion issues in major buildings – OPD, Emergency, Dental and Maternity blocks

Figure 5: Corrosion cracks in Emergency Block & OPD Block

3.3.3 CRACKS

Cracks are observed in participation wall in the CT scan building and ENT building. As per hospital staffs, these cracks are the effects of Gorkha Earthquake.

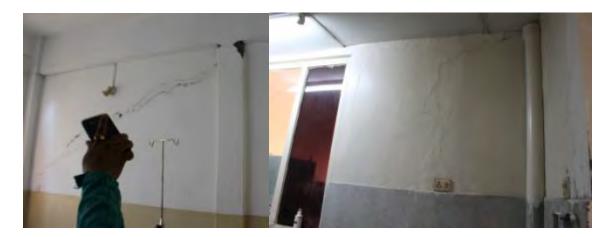


Figure 6: Wall cracks in Emergency Block & OPD Block

Besides, it is also observed a crack in the slab and wall in Maternity building at the location of load path problem - lack of wall in ground floor

Figure 7: Wall and Floor cracks in Maternity Block

Cracks are observed in most of the construction joints due to lack of proper gaps as well as sealing these gaps

Figure 8: Vertical Cracks on Masonry Wall (Sealed area of Seismic Separation)

3.3.4 POUNDING EFFECTS

It is observed a pounding effect between CT Scan building and ENT building during Gorkha Earthquake as shown in the following photos

Figure 9: Pounding Effect at ENT and CT Scan Block Connection

3.3.5 POOR MAINTENANCE

Growing plants and leakage of pipe line are clearly indicated the lack and/or poor maintenance in the most of the building. Besides, as mentioned above, it is also observed many seepage, rusting and deterioration of materials in most of the building as a symptoms of poor maintenance of these buildings

Figure 10: Poor Maintenance

3.3.6 LOAD PATH & CONFIGURATION

All the buildings except Maternity block are in regular configuration in plan. The plan of Maternity block is presented in the following Figure. However, there are lacks of complete load path in some location in Dental, Emergency and Maternity blocks.

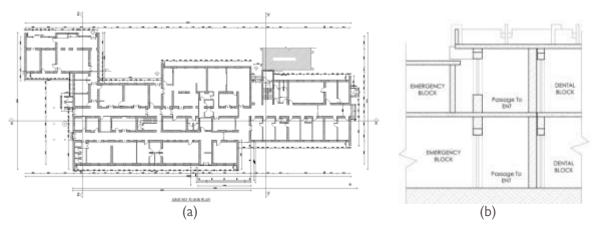
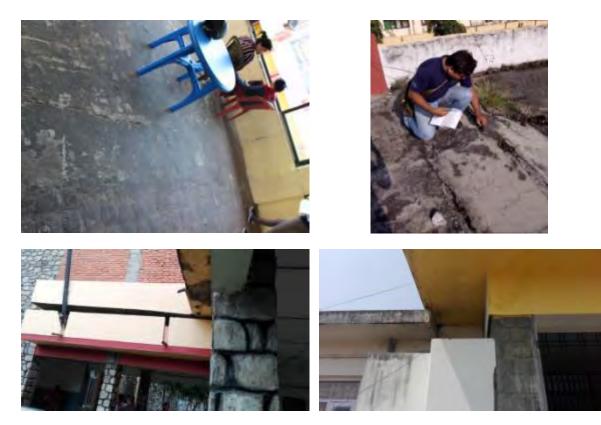



Figure II: a) Plan of Maternity Block. b) A disconnect load path in Emergency Block

3.3.7 SEISMIC SEPERATION

The hospital buildings are present in a clustered form where the majority of the blocks are connected to each other with seismic /expansion joints. However, there are lacking of proper location and separation in most of the seismic gaps. The most of separation are covered by flooring finishing, and concrete as shown in the following photos. The joints provided are not maintained and rubble has collected in the joints. Along with that, due to pervasive cracking in the joint covers and level differences between buildings, there is commonly a water seepage problem at the expansion joint area. In other cases, the joints are discontinuous at upper levels of the buildings where two beams / floors are attached (see Figure 12). A structural engineer team of DUDBC and NHSSP has

investigated in the field while reviewing the design and incorporated in analysis and retrofitting design of each block which is presented in block-wise detail reports.

Slab at two different slab level (Link Corridor Slab at two different level between emergency between Dental and ENT Block)

and corridor at first floor but slab continuous at ground floor

Figure 12: Discontinuity Seismic Separation

3.3.8 **NON-STRUCTURES COMPONETS**

Upon investigation of the buildings within the hospital periphery, following deficiencies among non-

structural components were found

- Lack of appropriate anchorage and support of NSC •
- Poor drainage and piping system
- Damages of flash ceiling •
- Poor electric wiring and HVSC system •

Figure 13: Condition of Non Structural Components (Utility Services)

3.4 CONCLUSION

Site visit and inspection of the building were conducted by the expert engineer team in order to have a preliminary idea on the building typologies and their existing conditions. Most of the buildings are load bearing type with stone masonry walls in cement mortar where as some are RCC frame with stone or brick masonry infill. The following are the conclusion based on the condition assessment of the buildings.

- The impact of the 2015 Gorkha Earthquake appears minor. Some damages in partition walls of CT scan buildings and no major damage to the other buildings was observed during the condition assessment. However, more detail observations shall be made during the detail condition/seismic assessment.
- Water leakage and seepage issues are of the critical issue in the most of the blocks of the hospital campus.
- Repair and maintenance of the buildings appear very infrequent and poor which has led to degradation of the buildings.
- Lack of adequate anchorage and support of non-structural components are critical in the major buildings.
- Poor sewerage drainage, electrical wiring as well as other HVAC system were observed.

• The hospital seems to be very busy and construction for retrofitting will need a proper decantation strategy.

From the qualitative assessment and based on the past studies results, it is concluded that most of the buildings located at the Western Regional Hospital complex are appropriate for retrofitting other than few minor projected sheds attached with the main blocks, if these buildings meet their intended function in the changed scenario such as modern medical technology and population pressure, and also if the buildings meet their hospital's Master Plan requirements. However, the final decision shall be made only after the detail seismic assessment with upgrading functional requirement of the building and economic considerations for retrofitting the buildings

3.5 RECOMMENDATION FOR FUTURE WORKS

After the preliminary assessment of the existing building structures, basic ideas for seismic assessment were developed which is required for the retrofit analysis and design. The following recommendations have been made which are considered to be of utmost importance before carrying out the retrofit design:

- A detail seismic assessment of the hospital buildings is necessary to capture major deficiencies and weaknesses in the buildings for the analysis and design of the retrofit.
- Geological and geotechnical parameters were lacking in the past studies and are required for the design of the retrofitting. Hence, it is recommended to carry out necessary geotechnical investigations of the site to understand geotechnical conditions of the site and acquire geotechnical parameters with liquefaction potential.
- Investigation of the existing foundation systems of the building structures in recommended.
- The destructive and nondestructive test results for construction material properties, building component section details (e.g. reinforcement size, configuration and detailing), are not available (for all fifteen blocks) from the past studies. Such test results are essential for the detailed assessment and retrofit design of the building structures. Hence, it suggested to carry out a comprehensive destructive and non-destructive tests
- Efforts need to be made to retrieve structural drawings of the buildings for realistic assessment and retrofitting design of the buildings. In absence of these, very conservative assumptions have to be made which may result in expensive retrofitting solutions. Some of the blocks especially the first floors do not seem to be that old, hence it might be possible to find the structural drawings of these building, if efforts are made.

4 ON-SITES INVESTIGATION

The on-site investigation includes the material testing, geotechnical investigation, foundation exploration, seismic separation and any variations and deterioration. For an evaluation for material parameters and condition for building material, destructive and non-destructive testing was conducted. In addition, geotechnical investigation and foundation exploration were also conducted to understand the geotechnical parameters of the hospital sites and foundation condition of the buildings. This section summarized the tests and on-site investigation with necessary test results.

4.1 NON-DESTRUCTIVE & DESTRUCTIVE TESTING

This activity aims to understand the type, properties, conditions, and strengths of the materials used in the construction of the hospital. Non-destructive tests shall be carried out in most of the locations, whereas destructive tests shall be prescribed only when the non - destructive tests are not sufficient to derive the input parameters for design.

The following destructive and non-destructive tests have to be carried out for two typology buildings of the Hospital:

- I) Reinforced Concrete Cement Structures
 - Ferro Scan Test
 - Schmidt Hammer Rebound Test
 - Ultrasonic Pulse Velocity Test
 - Concrete coring and compression tests
- 2) Load Bearing Masonry Structures
 - Penetrometer Test
 - Ferro Scan Test
 - Bed joint shear test
 - Brick/stone test

The material testing was conducted by G. S. Soil & Materials Engineers (P) Ltd at a given location. The results from the test were used to calculate the material parameters like modulus of elasticity, density and Poisson's ratio. These stress values were also used as permissible limits to check the developed stress calculated from the numerical model. The testing details and test results are presented in the separate report as an Annex. The summary of the test results are as follows:

4.1.1 IN-SITU BED JOINT SHEAR TEST

The summary of the bed joint shear test is presented in Table 3 below.

S.No.	Building	Location	Wall thickness (mm)	Height of Wall above test location (m)	Shear Strength (MPa)	Remarks
I	Pediatric	Grid D/E-I	457	6.0	0.3	
2	Medical	Grid K-7/8	457	6.23	0.4	
3	Maternity	Grid Q-1/2	457	5.26	0.41	
4	Dental	Grid L-3/4	457	5.26	0.31	
5	Lab	Grid A-1/2	457	6.17	0.42	

Table 3: Summary of Bed Joint Shear Test

From the above test results, it shows that shear strength of stone masonry wall varies from 0.3 - 0.42 MPa.

Mean of the test data = μ = 0.368

Standard deviation = $\alpha = 0.058$

Shear Strength as per test result = $0.368 \pm 1*0.058 = 0.31/0.426$ MPa (ASCE 41-13)

Knowledge factor = k = 0.7 (IS 15988- 2013)

Allowable shear strength = 0.217/ 0.298 MPa

According to Public Works and Government Services Canada, 2000 (PWGSC, 2002)."Guidelines for the Seismic Assessment of Stone-masonry Structures" the shear strength of stone masonry needs to be limited to a maximum value of 0.2 MPa for rubble construction (German standard DIN 1053). Thus, the lower bound value of 0.3 IMPa of on-site test shear strength using knowledge factor as per IS 15988 (2013) is considered for the structural analysis.

Figure 14: Photograph showing Bed Joint Shear Test

4.1.2 STONE COMPRESSIVE STRENGTH TEST

For compressive strength of the stone, stones were collected from the three different building and tested in the lab. The test results are presented in Table 4 below.

Sample	А	В	С
Testing dimension (cm)	7.64 × 7.77 × 7.35	7.70 × 7.64 × 7.18	7.85 × 7.82 × 6.08
Surface Area (cm²)	59.3	58.77	61.38
Volume	435.57	422.00	373.06
Density	2.66	2.64	2.37
Weight	57.5	1113.6	884.2
Failure load Psi	3750	5250	2400
Compression Strength (N/mm²)	55.24	77.96	34.16

Table 4: Summary of Compressive Strength Test of Stone

Figure 15: Photograph showing Compressive Strength Test of Stone

4.1.3 CORE TEST FOR COMPRESSIVE STRENGTH OF CONCRETE

The summary of the core testing location and test results are presented in Table 5 below.

S.No.	Building	Element	Location	Measured Compressive Strength kg/cm ²	In-situ Cube Strength (core drilled vertically) kg/cm ²	Remarks
I	Nutrition	Slab	Grid B/C-I	237.53	266.71	
2	Pediatric	Slab	Grid A-4/6	217.48	229.55	
3	Ramp	Slab	Grid B/C-6	226.57	256.84	
4	CT Scan	Slab	Grid B/C-9	231.8	254.08	
5	Maternity	Slab	Grid P/Q-I	227.83	252.85	
6	Medical	Slab	Grid A-1/2	220.04	240.61	
7	Pharmacy	Slab	Grid A-1/2	227.17	247.34	
8	Emergency	Slab	Grid I'/J'	216.15	231.05	
9	Dental	Slab	Grid E/F-I	223.13	252.33	
10	ENT	Slab	Grid F-3/4	222.48	247.39	

Table 5: Summary of Core Cutting Test

Figure 16: Photograph showing Concrete Core Test

4.1.4 PENETROMETER TEST

To find the compressive strength of the mortar of the existing buildings, penetrometer tests were conducted in different location of all the assessed hospital buildings. The test results are presented in the separate report. Sample penetrometer test results performed on dental and emergency blocks are presented in Table 6.

Table 6: Penetrometer Tests of Cement Mortar of Existing Structures

	G.S. Soll & Materials Engineers (P) Ltd. (Sed Invergation & Analysis, Design & Conservation of Piling, Anchoring, Show Stability Analysis, Gov-Synshetic Design & Supply, Field Invergences, Sed & Manmal Lab Trengel								
last Gentual	'emera Regional Hospital -	ace Hardness Rebor Decat Bioda	und Number	Test					
(POCTURA) B	Nemer Wall								
S.No.	Pesitive	Peasitemeter Reading Kg/cm2	Ment Value	Commpressive Strongth (MPa)	Remarks				
			Ment Value		Remarks				
		Randing Kg/cm2	Ment Value		Remarks				
		Randing Kg/cm2	Ment Value 37.40		Remarks				
T	Position	Randing Kg/cm2		Strongik (MPa)	Remarks				

Project Wessers Pagamal Horpest - Denni Block

Floor Ground

5.Ne	Pesition	Pasatrometer Reading Keysm2	Mean Volue	Commpetitive Strongth (MIPs)	Rémarke
1	Qual 4/8-1	37	8130	·	
1		36		8.85	
1		38			_
4		38		F	
3		37		- F	

Surface Hardness Rebound Number Test

Project Western Regional Hospital - Emergency Block Floor : Oround Structural Element Wall

0.0.00100100	APPENDENT OF MER	CARPENDE, 17 MAR						
S.No.	Position	Penetrometer Reading Kg/cm2	Mean Value	Commpressive Strength (MPa)	Remarks			
1	Orid A-4/5	37	37.20	3.65				
2		38						
3		37						
4		36						
5		38						

Project Western Regional Hospital - Emergency Block Floor : Ground

Structural	Element Wall	Gement Wall						
S.No.	Position	Penetrometer Reading Kg/cm2	Mean Value	Commpressive Strength (MPa)	Remarks			
1		37						
2	Grid D/E-6	39	37.40	3.67				
3		38						
4		37						
5		36						

From the pocket penetrometer test, the average compressive strength of mortar was found to be 3.622 MPa

4.2 GEOTECHNICAL INVESTIGATION

The aims of geotechnical investigation are to understand the geology and engineering properties of existing soil at the Western Regional Hospital. Five bore holes of 20m depth were investigated during this investigation. The locations of the bore holes are as shown in Figure 17.. The intent of this test is to get: a) Soil classifications and site subsoil characterizations, b) Liquefaction susceptibility of the site, and c) Bearing Capacity of the Soil.

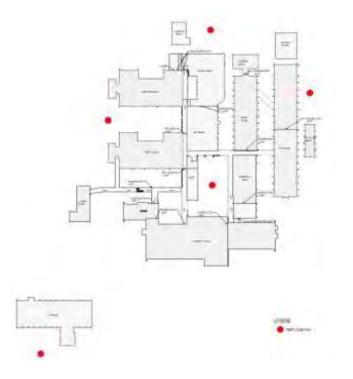


Figure 17: Location of Drill Holes for Geotechnical Investigation

Geotechnical investigation of the site has been carried out and all the design parameters have been considered accordingly. In this study, geotechnical parameters like bearing capacity and density have been considered according to the investigation report presented in Annex B. Summary of findings from geotechnical investigation has been presented in Table 7 below.

Footing size in m	Depth of footing in m	Allowable bearing by Terzaghi's method in kN/m²	Settlement in mm	Allowable bearing capacity in KN/m²	Modulus of Sub Grade Reaction in KN/m³
2.0 × 2.0	1.0	169.2	20.4	169.2	13536.0
2.0 × 2.0	1.5	204.4	23.4	204.4	16352.0

Table 7: Bearing Capacity at Hospital Site

4.3 FOUNDATION EXPLORATION

A structure engineer team of DUDBC and NHSSP has conducted foundation exploration work in Western Regional Hospitals.

Foundation excavation works are done at different place for understanding the existing condition of the foundation and the soil nature of ground. Following findings are observed during foundation excavation.

- Lack of tie beam in the masonry building at plinth level.
- Step wall footings of stone masonry in cement sand mortar as shown in the figures
- Water seepage in foundation of medical block.

The depth, size and thickness of the foundation as per excavation are presented in figure below

Foundation Excavation

Foundation Measurement

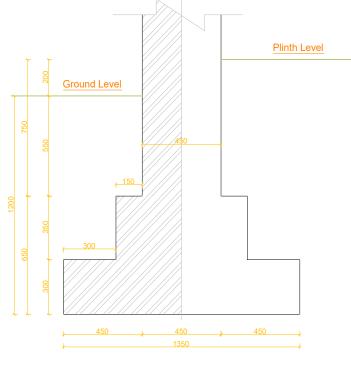


Figure 18: Foundation Exploration of Masonry Block

S.N.	Description	Finding (Maternity Block)
Ι	Soil Type	Gravel mixed Clay
2	Foundation Depth	1200mm
3	Foundation Size	1250 mm
4	Footing thickness	350+300=650 mm

Table 8:	Findings	of	Foundation	Excavation
----------	----------	----	------------	------------

Note: There is water seepage found during foundation exploration in Medical Blocks. Thus, foundation exploration cannot complete. In case of RC framed buildings, there exist sanitary and water supply pipe lines running and sanitary manholes. Thus, no proper location found for foundation exploration.

Foundation Measured During Excavation Maternity Block

4.4 FOUNDATION CHECK

The following are the foundation check calculation

Location	Joint Label	Unique Name	Load Case/Combo	FX	FY	FZ
				kN	kN	kN
GL		5	DL+LL+EQY	6.0291	-393.2136	11.6124
GL	2	57	DL+LL+EQY	17.146	-370.4394	686.5512
					Total =	698.1636
GL		5	DL+LL-EQY	4.7157	459.0548	677.7964
GL	2	57	DL+LL-EQY	46.9313	399.4613	291.4342
					Total =	969.2306

Table : Joint Reaction from Analysis (Maternity Block I)

Total Load =	969.231	kN	
Length of wall =	5.515	m	
Load per meter =	175.744	kN/m	
ABC =	169.200	kN/m ²	
Width of footing required =	1.039	m	
Width of footing $=$	1.35	m	safe
Unit wt of soil =	21.000	kN/m³	
Angle of repose =	31	degree	
	0.541	rad	
Depth of footing required =	0.826	m	
Depth of footing =	1.2		safe

From the above calculation, it shows that the existing foundation is found to be safe

RC Frame Buildings

5 DETAILED SEISMIC ASSESSMENT FOR RC FRAME BUILDING

5.1 BACKGROUND

The Detailed Seismic Assessment (DAS) is performed to assess the seismic behavior of the buildings It is a qualitative assessment and more comprehensive assessment than the conditional assessment described in previous chapter. In this process, the probable strength of the lateral load resisting system is determined and compared with expected seismic demand on the members. The DSA process is based on the Indian Standard Code of Practice and Nepal building codes (NBC).

5.2 METHODOLOGY

The detailed seismic assessment is basically based on structural modeling and analysis. For the modeling of the building, commercial structural analysis Finite element based ETABS software was used. The RC framed buildings are analyzed initially using the Indian Standard Code of Practice. As per reviewers' advices for the consistency with masonry building, the buildings are also analyzed based on NBC. The detailed seismic assessment includes the following process.

- I. Selection of material/design parameter and analysis approach
- 2. Load assessments.
 - A. Dead load
 - B. Live Load
 - C. Seismic Load
- 3. Numerical Modeling
- 4. Results and discussion
- 5. Finding and Recommendation

5.3 MATERIAL PARAMETER

As discussed in the Chapter 4, destructive and non-destructive tests are conducted in the field to find the existing condition and engineering parameter of building material. Some building parameters obtained from tests are compressive strength of cement sand mortar, shear strength of stone masonry, compressive strength of concrete and rebar size and number. The test results adopted for further analysis are tabulated below.

S.N.	Parameter	Test Result	Adopted Value	Units	Remark
I	Compressive strength of cement sand mortar	3.5	3.5	Мра	As per IS Code, M2 Mortar Grade
2	Shear Strength of Stone masonry Wall	0.31	0.217	Мра	Applying knowledge factor as per IS Code 15988
3	Compressive strength of concrete	27	15	Мра	Applying knowledge factor as per IS Code 15988

Table 9: Parameter Adopted from NDT Test

The material parameters adopted for analysis of buildings are listed below.

Concrete grade:(M)	M15	M20	M25	
Young's modulus for Concrete:	19365	22360	25000	N/mm ²
Poisson's ratio for concrete :	0.2			
Unit Weight:	25 KN			KN/m ³
Cha. Compressive Strength:	15	20	25	N/mm ²

Table 10: Mechanical Properties of Concrete (As Per IS Code)

5.4 CODES AND STANDARDS

The following Nepal Building Codes, Indian Standard Codes of Practices, and other guidelines are considered for creation of mathematical model, analysis and check of the structure:

- IS 456:2000 Plain and reinforced concrete: Code of Practice
- IS 1893:2002 Criteria for earthquake resistant design of structures
- IS 13920:1993 Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces – Code of Practice
- IS 875:1998 (Part I) Code of Practice for Design Loads (Part I: Dead Loads)
- IS 875:1998 (Part II) Code of Practice for Design Loads (Part II: Imposed Loads)
- IS 15988 : 2013 Seismic Evaluation and Strengthening of Existing Reinforced Concrete Buildings – Guidelines
- Nepal Building Codes

5.5 LOADING

Loads in the building are as per Indian standard code of practices. The calculation process of load and load cases are as follows

5.5.1 DEAD LOAD

The dead load is derived from the unit weight of different structural and non-structural elements in from IS 875 Part I and presented in Table II. The load calculations are based on actual measured drawings.

- The weight of infill walls is calculated based on measured drawings considering reducing opening present in wall and applied on beams as line weight in kN/m.
- Partition wall load are assigned as uniformly distributed area load in slab as area load in kN/m2.
- Floor finishing load are calculated for Mosaic tile finishing and assigned as area load in slab assuming 40 mm thick concrete screeding and 12.5 mm thick plaster and 25 mm thick tile.

The self-weight of the structural elements is automatically calculated by the software using the density assigned for the material. The detail loads are calculated on spreadsheets and are attached in Annex.

Туре	Value
Reinforced Concrete	25 KN/m ³
Brick Masonry	19 KN/m ³
Screed	20.4 KN/m ³
Plaster	20.4 KN/m ³
Mosaic Tile	20.4 KN/m ³

Table 11: Unit Weight of Materials Used

5.5.2 LIVE LOADS

The live load considered for various usage of space are taken as per codal provision in IS: 875 (part 2), 1987. According to code the live load adopted for analysis of structure are presented in Table 12 below.

S.N	Area type	Load	Unit
I	Bed rooms/wards, dressing rooms, dormitories and lounges	2.00	KN/m ²
2	Kitchens, Laundry is and Laboratories	3.00	KN/m ²
3	Toilets and bathrooms	2.00	KN/m ²
4	X-ray rooms, Operating rooms	3.00	KN/m ²
5	Office rooms, OPD rooms	2.50	KN/m ²
6	Corridors, Passages, Lobbies and staircases	4.00	KN/m ²
7	Boiler rooms and Plant rooms	5.00	KN/m ²
8	Store	5.00	KN/m ²
9	Terrace live load (accessible)	1.50	KN/m ²
10	Terrace live load (non-accessible)	0.75	KN/m ²

Table 12: Live Load used as per IS 875 (part II) - 1987

5.5.3 SEISMIC LOAD& ANALYSIS METHOD

There are two methods for the seismic analysis of the building; one is Seismic Coefficient Method and another is Response spectrum method (dynamic analysis).Both methods are considered for the calculation of seismic demand as per IS 1893:2002/2016 for RCC buildings.

I. SEISMIC COEFFICIENT METHOD

To determine the seismic load, it is considered that the country (Nepal) lies in the seismic zone V according to IS 1893:2000. The soil type is considered as medium with 5% damping to determine average response acceleration. The building is analyzed as ordinary moment resisting frame without consideration of infill wall. Therefore, the fundamental time period T_a is obtained by using the following formula:

 $Ta = 0.075h^{0.75}$ [Cl.7.6.1, IS 1893 -2002]

Other factors considered for seismic load calculations are as follows

Zone factor, Z = 0.36 for Zone V [Table 2, Cl6.4.2, IS 1893 -2002]

Importance factor, *I* = 1.5 [Table 6, Cl6.4.2, IS 1893 -2002]

Response Reduction Factor = 3 for ordinary resisting frame (OMRF) [Table 6, CI6.4.2, IS 1893 -2002]

Detail sample calculation is presented in Table 14below.

II. RESPONSE SPECTRUM METHOD

In the dynamic analysis using response spectrum, the contributions from the higher modes of vibration are taken into account by combining the peak response quantities (member forces, displacements, storey forces, and storey shears and base reactions) from each mode of vibration. The number of modes to be used in the analysis is determined by the requirement that the sum total of modal masses of all modes considered is at least 90 percent of the total seismic mass.

Response spectrum analysis is characterized mainly by four parameters: modal mass (M_k), modal participation factors (\emptyset_k), mode shape coefficient (φ_{ik}) and modal natural period (T_k). Modal mass (M_k) is a part of the total seismic mass of the structure that is effective in mode k of vibration, while modal participation factor (\emptyset_k) of mode k of vibration is the amount by which mode k contributes to the overall vibration of the structure. Similarly, mode shape coefficient (φ_{ik}) is the ratio of the amplitude of mass i to the amplitude of one of the masses of the system when vibrating in normal mode k, and the modal natural period (T_k) is the time period of vibration in mode k.

The design lateral shear force at each floor in each mode is computed in accordance with the IS: 1893 -2002 equations 7.8.4.5c and 7.8.4.5d. The design base shear V_B (calculated from the Response Spectrum method) is compared with the base shear V_b (calculated by empirical formula for the fundamental time period). If V_B is less than V_b, all of the response quantities are multiplied by V_b /V_B as per Clause 7.8.2.

The following procedure is used to generate the lateral seismic loads.

- 1. User provides the value for Z, soil type, damping and spectrum curve as input. The spectrum curve is scaled down by Z value which is 0.36 in this case. Thus the maximum value of curve is $0.36 \times 2.5 = 0.9$.
- 2. For the initial run scale factor of 2.4525 multiplied by the value $\frac{I*G}{2*R} = \frac{1.5*9.81}{2*3} = 2.4525$ is chosen.
- 3. Program calculates time periods for all modes as specified by the user. The modes specified are such that at least 90% mass participations is ensured.
- 4. The program calculates design horizontal acceleration spectrum A_k for different modes.

- 5. The program then calculates mode participation factor for different modes.
- 6. The peak lateral seismic force at each floor in each mode is calculated.
- 7. All response quantities for each mode are calculated.

The peak response quantities are then combined as per method (CQC or SRSS or ABS) as defined by the user to get the final results.

The seismic weight is determined based on the following load factors. [Table 8, Cl.7.9.2, IS 1893 (Part 1):2002]

S.N	Load Type	Scale Factor
I	Dead Load	I
2	Live Load > 3	0.50
3	Live Load < 3	0.25
4	Roof Live Load	Nil

Table 13: Load factors for seismic weight

Seismic zone			V (Very Sever)-Nepal	
Seismic Zone factor	Z	Cl. 6.4.2, Table 2	0.36	
Type of Building			Hospital Building	
Importance factor		Cl. 6.4.2, Table 6	1.5	
Lateral load resisting system			Ordinary moment Resist	ting Frame
Response Reduction factor	R	Cl. 6.4.2, Table 7	3	
Height of the building	h		3.77	m
Dimension of the building Along X	D _x		36.60	m
Dimension of the building Along Y	Dy		12.24	m
Time period of the building	T=0.075h ^{0.75}	Cl. 7.6.2	0.056	sec
Soil type			Type II (Medium Soil)	
Average response accl'n coefficient	Sa/g	Cl. 6.4.2, fig 2	2.5	
Design Horizontal Seismic Coefficient	$A_{h} = \frac{Z}{2} \frac{S_{a}}{g} \frac{I}{R}$	Cl. 6.4.2	0.225	

Table 14: Design Horizontal Seismic Coefficient as per IS 1893:2002(CT scan Block)

Thus, the seismic demand as per IS 1893: 2002 is <u>0.225</u> percentage of seismic weight.

Seismic zone			Pol	khara
Seismic Zone factor	Z	Cl. 8.1.6, fig 8.2	I	
Type of Building			Hospita	al Building
Importance factor	I	Cl.8.1.7, table 8.1	1.5	
Lateral load resisting system			Moment Re	esisting Frame
Structural performance factor	К	Cl. 8.1.8, table 8.2	2	
Height of the building	h		7.00	m
Dimension of the building along X	D _X		23.56	m
Dimension of the building along Y	D _Y		27.750	m
Time period of the building along X	$T = \frac{0.09h}{\sqrt{D_X}}$	Cl. 7.3 (b)	0.130	sec
Time period of the building along Y	$T = \frac{0.09h}{\sqrt{D_Y}}$	Cl. 7.3 (b)	0.120	sec
Soil type			Type II (M	1edium Soil)
Basic seismic coefficient along X	Cx	Cl. 8.1.4, fig 8.1	0.08	
Basic seismic coefficient along X	C _Y	Cl. 8.1.4, fig 8.1	0.08	
Design Horizontal Seismic Coefficient along X	C _{dX} = CZIK	Cl. 8.1.1	0.24	
Design Horizontal Seismic Coefficient along X	C _{dY} = CZIK	Cl. 8.1.1	0.24	

Table 15: Design Horizontal Seismic Coefficient as per NBC 105 (CT scan Block)

The seismic demand as per NBC is 0.24 and as per IS code 0.225. NBC 105 gives higher seismic demand. Hence, 0.24Horizontal Seismic Coefficient as per NBC 105 is taken for analysis of masonry structure

5.6 LOAD COMBINATIONS

Limit state method of analysis and design is adopted for the RC frame buildings i.e. for T2 Typology. Load combinations for the analysis and design of structure are adopted as per NBC 105: 1994and IS 456: 2000 & IS 1893: 2002. The design load combinations are the various combinations of the load cases for which the structure needs to be checked. Although the structure is subjected to dead load (DL), live load (LL), wind load (WL), Snow load (SL) and earthquake induced load (E), Wind load and snow load are not considered in the structural analysis of the WRH's buildings. The following load combinations have been defined.

 For the analysis as per NBC 105:1994: Static Load Combination:

DL + LL

Seismic Load Combination:

DL + 1.3 LL + 1.25 E; 0.9 DL + 1.25 E; DL + 1.3 SL + 1.25E

2. For the analysis as per IS 1893:2002:

Static Load Combination:

1.5 (DL + LL)

Seismic Load Combination:

 $I.2 (DL + LL \pm EQ)$

0.9 DL ±1.5EQ

 $1.5 (DL \pm EQ)$

5.7 STRUCTURAL MODELLING

The building is modeled using finite element modeling software, ETABS 2016 V 16.2.1. A threedimensional beam element having 12 DOF with 6 DOF at each node were used for modeling beams and columns in the building, while 24DOF shell element with 6 DOF at each node were used to model RC wall and floor Slab.

For structural modeling, analysis and design, the following assumptions are considered

Centre line model of structure are done. The joint eccentricities are not considered.
 ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH |34

- Beams, columns are modeled as line element and slab and walls are modeled as shell elements.
- Beam column joint are assumed continuous joint.
- Slabs are modeled as thin shell element.
- RC slabs are modeled as rigid floor. All loads such as imposed loads, partition wall load, floor finishing loads etc. are applied on slab as uniformly distributed area load.
- All the supports are fixed at plinth level. Fixed support conditions are assigned for columns while hinge supports conditions are assigned for masonry walls.
- Partition wall are not considered in modeling but their weight are calculated and applied as area load on slab panel.
- Staircase cover is not considered in modeling. But, load from staircase cover was calculated and applied at corresponding columns as point load.
- No ties beams are modeled. So ground floor wall and partition loads are not added, hence considered passing on the foundation directly.
- Structural member sizes are modeled as per field measurement.
- Crack section are modeled as per recommenced by IS 15988: 2013 Table 2.

The detail modeling parameters and assumptions made are described in following sections.

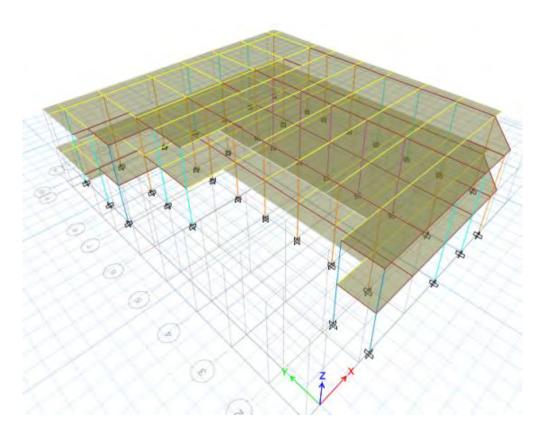


Figure 19: 3D Model of Building

5.8 ANALYSIS METHOD

The detail seismic evaluation is performed to determine the probable strength of the lateral load resisting system and compare with expected seismic demand on the members. The probable strength calculated from conventional methods is modified with the factor k, known as the knowledge factor (for Western Regional Hospital, k is taken 0.7). The seismic demand is calculated based on NBC 105:1994 for lateral forces considering useable life factor U=1 for the Hospital buildings, as per IS 15988: 2013 for building with critical safety. Under this process a building analysis is performed, the evaluation requirements are based on linear response spectrum analysis.

Two configurations are analyzed: 1) the bare frame and 2) the infilled frame, in order to examine the variation of storey stiffness and strength. For the modeling of the infill panels, Equivalent Diagonal Strut Method is used as per IS 1893: 2016.

However, the overall analysis steps include applying the external forces, calculating the internal forces in the members of the building, calculating the deformations of the members and building, and finally interpreting the results and recommendation on retrofitting.

5.9 RESULTS AND DISCUSSION

The analysis results are discussed in this section. In this assessment, seismic demand is based on NBC 105 (1994) while the configuration and strengthen related checks for seismic assessment are based on IS 15988 (2013) because of lack of seismic evaluation standards in Nepal codes.

It focuses on the seismic demand, modal mass participation, inter storey drift, pounding, soft storey, torsional and mass irregularity and other configuration and strength related checks specified in IS 15988 (2013). The structural member capacity is checked for limit state load combination for earthquake loading with their respective seismic demand. The results of the CT Scan building are presented and discussed in the following section as a sample example. The results and discussion of other building are presented in Annex

5.9.1 SEISMIC DEMAND

A) Seismic Coefficient Method:

The seismic demand of the building is calculated as per NBC 105:1994. The seismic demand of building is shown in Table 16 below.

				-	
Load Pattern	Туре	Direction	Coeff. Used	Weight Used kN	Base Shear kN
EQX	Seismic	Х	0.24	13122.496	3149.398
EQY	Seismic	Y	0.24	13122.496	3149.398

Table 16: Seismic Demand of Building

B) Response spectrum Method:

The seismic demand of the building as per response spectrum method as per NBC is calculated as follows,

For the initial run following scale factor was used

$$ZIK = 1.5 * 2 * 1 \approx 3.0$$

Base shear from this scale factor is computed as:

In global X direction, base shear = V_B = 296.83 kN

In global Y direction, base shear = $V_B = 271.90$ kN

Which are less than base shear (V_b) from seismic coefficient method and thus, need to be modified as per NBC 105:1994, clause 11.3, the modification factor being:

In global X direction:

$$\frac{V_b}{V_B} = \frac{3149.398}{296.83} = 9.5491$$

In global Y direction:

$$\frac{V_b}{V_B} = \frac{3149.398}{271.90} = 10.4246$$

Hence, the modified scale factors to be used are:

Thus, modified base shear from response spectrum method are:

In global X direction = 2833.740 KN

In global Y direction = 2834.180 KN

5.9.2 MODAL TIME PERIOD AND MASS PARTICIPATION

NBC 105:1994 Clause 11.2 states that number of modes to be used in the analysis should be such that the sum total of modal masses of all modes considered is at least 90 percent of the total seismic mass of the structure. Analysis was carried out for first 10 modes so that the mass participation satisfies this criterion in both orthogonal directions. Table 17 shows time period and mass participation ratio for all modes.

Case	Mode	Period sec	Ux	U _Y	Sum U _X	Sum U _Y
Modal	I	0.553	0.00000699	0.9329	7E-06	0.9329
Modal	2	0.47	0.0283	0.0009	0.0283	0.9338
Modal	3	0.458	0.8943	0.000006575	0.9226	0.9338
Modal	4	0.212	1.027E-06	0.066	0.9226	0.9998
Modal	5	0.181	0.0129	0.00001369	0.9355	0.9998
Modal	6	0.169	0.0637	0.000004024	0.9992	0.9998
Modal	7	0.118	0.0001	0	0.9993	0.9998
Modal	8	0.113	0	0.00003852	0.9993	0.9998
Modal	9	0.106	0.00002913	0	0.9994	0.9998
Modal	10	0.104	6.102E-07	0.000005136	0.9994	0.9998

Table 17: Modal time period and mass participation

5.9.3 STOREY DISPLACEMENT AND DRIFT

From the analysis the displacements of the mass centre of various floors are obtained and are shown in Table 18: Storey Drift CalculationsTable 18 along with storey drift.

Elevation		Storey Displ	acement (mm)	Storey drift (%)		
Storey	m	X Dir'n	Y Dir'n	X Dir'n	Y Dir'n	
Storey2	7.0	15.600	22.544	0.185	0.265	
Storeyl	3.5	9.118	13.275	0.261	0.379	

Table 18: Storey Drift Calculations

Elevation		Storey Displ	acement (mm)	Storey drift (%)		
Storey	m	X Dir'n	Y Dir'n	X Dir'n	Y Dir'n	
Storey2	7.0	15.600	22.544	0.185	0.265	
Base	0.0	0.000	0.000	0.000	0.000	

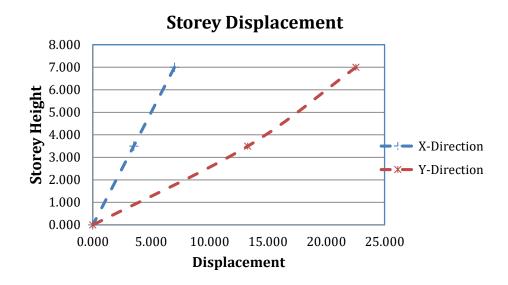


Figure 20: Storey Displacement Check

From the above results, it shows that storey drift does not exceed the code prescribed value of 0.01 times story height. Thus the drift check comply with the safety value mentioned in the code. (Cl. no. 9.3 of NBC 105:1994),

The ultimate deflections of building for lateral load are calculated as per NBC 105 by multiplying elastic deflection by factor 5/ K = 2.5

Where, K = structural performance factor = 2

The ultimate deflections for different blocks are presented in Table 19 below.

Story	Elevation	Displace	ment (mm)
Story	(m)	X-Dir	Y-Dir
Storey2	7.0	39.00	56.35
Storeyl	3.5	22.795	33.1875
Base	0.0	0.000	0.000

Table 19: Ultimate Deflection

39 ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

5.9.4 CHECK FOR ADJACENT BUILDINGS

The seismic gap required between CT scan and ENT blocks is shown in Table 20 below.

Storey Elevation (m		Displacem	ient (mm)	Check C	riteria
Storey		CT Scan	ENT	0.004hi	
Storey2	7.24	56.35	135.105	0.004*7240 =28.96 mm	50mm
Gap Required =		56.35+135.105	= 191.455 mm		

Table 20: Requirement of Seismic Gap

As per Cl. no. 9.2.2 of NBC 105:1994, parts of the buildings or buildings on the same site which are not designed to act as an integral unit shall be separated from each other by a distance of not less than the sum of the design lateral deformations or 0.004hi or 50mm whichever is the greater.

The seismic gap required between CT scan and ENT blocks is 191.455mm and existing gap between two blocks is less than 25mm. Thus the building separation check does not comply with the safety value mentioned in the code.

Table 21: Requirement of Seismic Gap

Elevation		Displacem	ient (mm)	Check Crit	eria
Story	hi (mm)	CT Scan	Pediatric	0.004hi	
Storey2	7240	56.35	8.54	0.004*7240 =28.96 mm	50mm
Gap Required =		56.35+8.54	= 64.89 mm		

The seismic gap required between CT scan and Pediatric blocks is 64.89 mm and existing gap between two blocks is 100mm. Thus the building separation check seems to comply with the safety value mentioned in the code.

5.9.5 CHECK FOR TORSIONAL IRREGULARITY

The torsional irregularity check is presented in Table 22 below which complies with the codal provision.

			Computed Storey drift		
Storey	Load Case	Direction	Maximum	Average	Ratio
Storey 2	EQX	Х	16.25	16.13	1.01
Storey I	EQX	Х	9.47	9.11	1.04
Storey 2	EQY	Y	23.46	22.91	1.02
Storey I	EQY	Y	13.82	13.58	1.02

Table 22: Torsional Irregularity Check

From the above table, it shows that the maximum storey displacement, computed with design eccentricity, at one end of the structures transverse to an axis is more than 1.2 times the average of the storey drift at the two ends of the structure. Thus the building does not exist torsional irregularity as per IS 1893 (part I):2002.

5.9.6 SOFT STOREY

The soft storey check is presented in Table 23 and Table 24 below.

Storey	Load	Storey Force (kN)	Displacement (mm)	Stiffness kN/m	% difference compare to	Check (70% limit)
Storey 2	RSx	1520.70	16.254	93558	-	ОК
Storey I	RSx	1431.86	9.501	150707	161.084	ОК

Table 23: Soft Storey Check for X-Direction

Table 24: Soft Storey Check for Y-Direction

Storey	Load	Storey Force (kN)	Displacement (mm)	Stiffness kN/m	% difference compare to above storey	Check (70% limit)
Storey 2	RSy	1493.05	23.512	63502	-	OK
Storey I	RSy	1459.51	13.842	105441	166.044	OK

From the above tables, it shows that is the lateral stiffness is less than 70% of that in the storey above. Thus, as per IS 1893:2002 part I, the building does not have soft storey.

5.9.7 MASS IRREGULARITY

The mass irregularity check is presented in below.

	Mass	% difference	e compare to
Storey	kg	Above storey	Below storey
Storey I	843968.76	70.791	-
Storey 2	494153.39	-	41.449

Table	25:	Mass	irregu	larity	Check
-------	-----	------	--------	--------	-------

From the above table, it shows that there is no change in effective mass more than 100 percent from one storey to the next. Thus the building does not have any mass irregularity as per IS 15988:2013.

5.9.8 STRENGTH RELATED CHECKS

As per IS 15988:2013, the following strength related checks are computed

I. Shear Stress in RC Frame Columns:

The average shear stress in concrete columns along X-direction = 0.568 Mpa, and along Y-direction = 0.503 Mpa.

Thus, the computed value shear stresses are more than, a) 0.4Mpa and b) 0.1 \sqrt{fck} , fck =0.387 Mpa

II. Axial Stress in Moment Frames:

The maximum compressive axial stress in the column of moment frame at base due to overturning force alone (F_0) as calculated using the following equation are

0.010 Mpa along X-direction, and

0.015 Mpa along Y-direction.

These values are less than 0.25fck as specified in IS 15988:2013.

5.9.9 COLUMNS CAPACITY DEMAND CHECK

The seismic demand of each structural member (Columns) for earthquake loading as explain above under heading seismic load are computed and Structural member capacity are checked for earthquake demand. The demand capacity ratio below one "1" means the structural member is safe and above one "1" means the structural member is unsafe. The demand capacity ratios for structural members are shown in Figure 21 and Figure 22 below.

GRID	Floor	Location	Size			Check
GRID	11001	LOCATION	5120	Reinforcement	PMM ratio	CHECK
	Ground	Bottom			1.96	FAIL
A8	First	Bottom	350X450		1.627	FAIL
	Ground	Bottom			1.944	FAIL
A9	First	Bottom	350X450		1.295	FAIL
	Ground	Bottom			1.803	FAIL
B6	First	Bottom	350X450		0.999	PASS
	Ground	Bottom			1.927	FAIL
B7	First	Bottom	350X450		1.463	FAIL
	Ground	Bottom			1.641	FAIL
DI	First	Bottom	350X450		0.805	PASS
	Ground	Bottom			1.821	FAIL
D9	First	Bottom	350X450	4-20+4-16	1.397	FAIL
	Ground	Bottom		4-20+4-10	1.983	FAIL
EI	First	Bottom	350X450		0.921	PASS
	Ground	Bottom			1.821	FAIL
E9	First	Bottom	350X450		1.391	FAIL
	Ground	Bottom			1.82	FAIL
F9	First	Bottom	350X450		1.388	FAIL
	Ground	Bottom			1.922	FAIL
G3	First	Bottom	350X450		1.545	FAIL
	Ground	Bottom			1.89	FAIL
G4	First	Bottom	350X450		1.484	FAIL
	Ground	Bottom			1.894	FAIL
G5	First	Bottom	 350X450		1.575	FAIL

Table 26: Column PMM Envelope Check

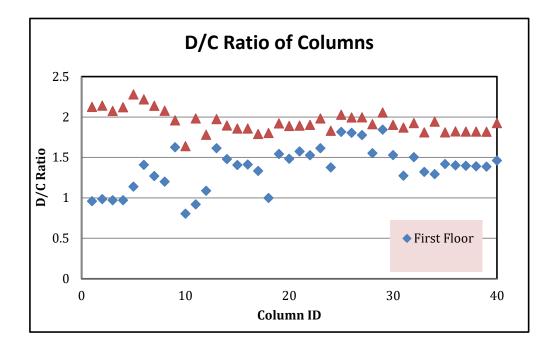


Figure 21: Demand Capacity Ratio of Structural Member (Column)

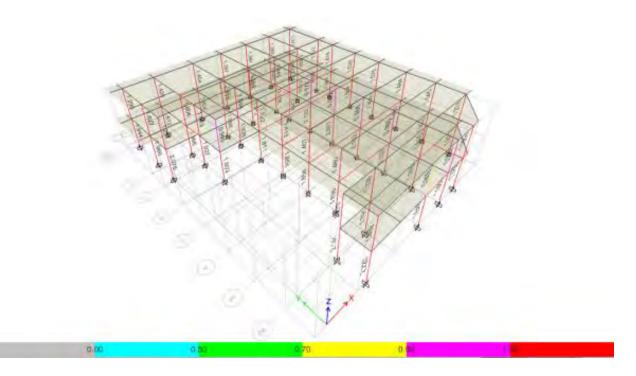
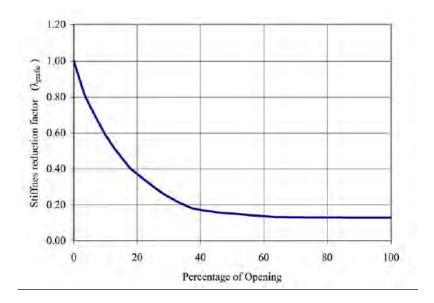


Figure 22: Demand Capacity Ratio of Structural Member (Column)

5.10 EQUIVALENT DIAGONAL STRUT METHOD:

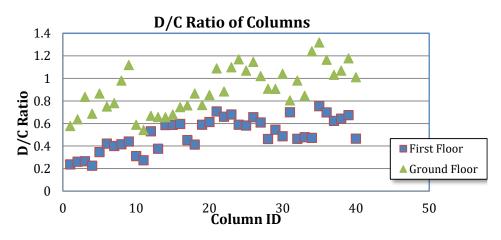

The Equivalent Diagonal Strut Method is the most accepted method for the analysis of in-filled frame structure. In this method, beams and column are designed as frame members which are having six DOF at every node and the entire infill is replaced by a pin joined equivalent diagonal compressive strut. The tensile strength of the equivalent strut is neglected.

The stiffness and strength of the equivalent diagonal compressive strut is determined using the recommendation given in FEMA 306. The thickness of the struts is considered to be same as actual infill wall and its length is equal to the length of the diagonal between the two compressive corners. Width of the strut is calculated by the equation specified in IS 1893 (part 1) 2016.

$$w_{ds} = 0 \cdot 175(\alpha_h)^{-0.4}L_{ds}$$

Under lateral in-plane loading, lateral stiffness of the infilled frame with opening depends on the size and position of the openings. The equivalent width of the diagonal compressive struts is reduced by a coefficient in the modeling of the infilled wall with opening. This stiffness reduction coefficient depends on the percentage of the opening. The coefficient is determined from the following Graph recommended by Asteris PG (2003). Thus the effective width of the equivalent diagonal strut for infill wall with opening is calculated by

$$w_{ds} = 0 \cdot 175 \lambda_{graphic} (\alpha_h)^{-0.4} L_{ds}$$


5.10.1 RESULT AND DISCUSSION:

I) Drift Check

Storov	Elevation	Storey Displacement (mm)		Storey drift (%)		
Storey	Storey m		Y Dir'n	X Dir'n	Y Dir'n	
Storey2	7.000	9.946	4.923	0.103	0.063	
Storeyl	3.500	6.338	2.716	0.181	0.078	
Base	0.000	0.000	0.000	0.000	0.000	

From the above results, it shows that storey drift does not exceed the code prescribed value of 0.01 times story height. Thus the drift check comply with the safety value mentioned in the code. (Cl. no. 9.3 of NBC 105:1994),

2) Capacity Demand Ratio Check

GRID	Floor	Location	Size	Reinforcement	PMM ratio	Check
	Ground	Bottom	600X450	4-25+4-20	0.652	Pass
E3	First	Bottom	000/430	7-23 - 7-20	0.248	Pass
	Ground	Bottom	600×450	4-25+4-20	0.677	Pass
E4	First	Bottom	000/130	7-23 - 7-20	0.26	Pass
	Ground	Bottom	600X450	4-25+4-20	0.801	Pass
E5	First	Bottom	600/450	4-25+4-20	0.256	Pass
	Ground	Bottom		4 25+4 20	0.758	Pass
E6	First	Bottom	600X450	4-25+4-20	0.236	Pass
	Ground	Bottom	(00)(450	4 25 4 20	0.882	Pass
E7	First	Bottom	600X450	4-25+4-20	0.341	Pass
	Ground	Bottom	250)/200	4.14.14.10	0.693	Pass
B'I	First	Bottom	350×300	4-16+4-12	0.473	Pass
	Ground	Bottom	250)/200	4.14.14.10	0.79	Pass
B'2	First	Bottom	350×300	4-16+4-12	0.434	Pass
	Ground	Bottom	350×300	4 14 14 12	1.003	Fail
A7	First	Bottom		4-16+4-12	0.422	Pass
	Ground	Bottom	350×450	4-20+4-16	1.103	Fail
A8	First	Bottom			0.493	Pass
	Ground	Bottom		4.20.4.14	0.577	Pass
DI	First	Bottom	350×450	4-20+4-16	0.319	Pass
	Ground	Bottom	250) (150		0.558	Pass
EI	First	Bottom	350×450	4-20+4-16	0.297	Pass
	Ground	Bottom	250)(450		0.647	Pass
FI	First	Bottom	350×450	4-20+4-16	0.514	Pass
	Ground	Bottom	250) (150		0.745	Pass
E2	First	Bottom	350×450	4-20+4-16	0.417	Pass
	Ground	Bottom	250) (150		0.71	Pass
C3	First	Bottom	350×450	4-20+4-16	0.621	Pass
	Ground	Bottom			0.747	Pass
C4	First	Bottom	350×450	4-20+4-16	0.589	Pass
	Ground	Bottom			0.795	Pass
C5	First	Bottom	350×450	4-20+4-16	0.597	Pass
	Ground	Bottom			0.786	Pass
C2	First	Bottom	350×450	4-20+4-16	0.483	Pass

	Ground	Bottom	250×450	4-20+4-16	0.929	Pass
B6	First	Bottom	350×450	4-20+4-16	0.456	Pass
	Ground	Bottom	2502/450	4 20 1 4 1 4	0.792	Pass
G3	First	Bottom	350×450	4-20+4-16	0.606	Pass
	Ground	Bottom	2502/450	4 20 1 4 17	0.854	Pass
G4	First	Bottom	350×450	4-20+4-16	0.633	Pass
	Ground	Bottom	350X450	4-20+4-16	0.999	Pass
G5	First	Bottom	330/430	4-20+4-10	0.747	Pass
	Ground	Bottom	250×450	4-20+4-16	0.921	Pass
G6	First	Bottom	350×450	4-20+4-16	0.673	Pass
	Ground	Bottom	2502/450	4 20 1 4 1 4	1.032	Fail
G7	First	Bottom	350×450	4-20+4-16	0.679	Pass
	Ground	Bottom	2502/450	4 20 1 4 1 4	1.15	Fail
G9	First	Bottom	350×450	4-20+4-16	0.603	Pass
	Ground	Bottom	2502/450	4-20+4-16	1.062	Fail
G8	First	Bottom	350×450	4-20+4-16	0.598	Pass
	Ground	Bottom	350×450	4-20+4-16	1.119	Fail
B8	First	Bottom			0.694	Pass
	Ground	Bottom	350×450	4-20+4-16	1.019	Fail
C8	First	Bottom			0.65	Pass
	Ground	Bottom	250×450	4-20+4-16	0.934	Pass
D8	First	Bottom	350×450		0.485	Pass
	Ground	Bottom	250×450	4-20+4-16	0.922	Pass
E8	First	Bottom	350×450		0.583	Pass
	Ground	Bottom	350×450	4-20+4-16	1.03	Fail
F8	First	Bottom	330/430	4-20+4-10	0.53	Pass
	Ground	Bottom	350×450	4-20+4-16	0.835	Pass
G2	First	Bottom	330/430	4-20+4-10	0.696	Pass
	Ground	Bottom	350X450	4-20+4-16	0.971	Pass
C7	First	Bottom	330/430	7-2077-10	0.512	Pass
	Ground	Bottom	3502450	4 20-14 14	0.932	Pass
C6	First	Bottom	350×450	4-20+4-16	0.532	Pass
	Ground	Bottom	350×450	4 20-14 14	1.224	Fail
A9	First	Bottom	350X450	4-20+4-16	0.498	Pass
	Ground	Bottom	350×450	4-20+4-16	1.251	Fail
B9	First	Bottom	3207420	ד-20 י ד-10	0.801	Pass

ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

	Ground	Bottom	350X450	4-20+4-16	1.136	Fail
C9	First	Bottom	3307430	7-2017-10	0.731	Pass
	Ground	Bottom	350X450	4-20+4-16	1.04	Fail
D9	First	Bottom	3307430	7-20 - 7-10	0.66	Pass
	Ground	Bottom	350X450	4-20+4-16	1.055	Fail
E9	First	Bottom	5507(450	4-2014-10	0.667	Pass
	Ground	Bottom	350X450	4-20+4-16	1.134	Fail
F9	First	Bottom	5507(450	4-2014-10	0.7	Pass
	Ground	Bottom	350X450	4-20+4-16	1.016	Fail
B7	First	Bottom	5507(450	1-2014-10	0.5	Pass

Check for Seismic Gap between ENT Block and CT Scan Block

The calculation of seismic gap required between CT scan and ENT blocks is presented in the following table. The calculations of displacement of ENT block are presented in the Annex.

Description	CT Scan	ENT	
Total linear Displacement	4.923 mm	7.971 mm	
К	2		
Gap required (ultimate displacement) :	(4.923+7.971)	*5/2= 32.235 mm	

The seismic gap required between CT scan and ENT blocks is 32.235 mm as per NBC 105 and existing gap between two blocks is about 25mm. Thus, the seismic gap required between adjacent block is found insufficient.

5.11 FINDINGS AND RECOMMENDATIONS

Base on the above structural analysis results, the following findings are observed:

- The building complies with codal requirement for storey drift. But the seismic gap required between adjacent block is found insufficient. So, there is possibility of seismic pounding.
- The buildings do not have torsional irregularity, soft storey, mass irregularity, and eccentricity.
- The structural column members are not found safe for earthquake loading as per present relevant NBC and Indian Standard Codes.
- It is recommended that retrofitting solutions are required to strengthen the building addressing the above mentioned deficiencies as well as to upgrade the performance of the buildings reducing seismic risk
 - 49 ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

6 RETROFIT DESIGN FOR RC FRAME BUILDING

This chapter summarizes retrofitting strategies adopted and retrofitting design.

6.1 RETROFITTING STRATEGY

The goal of retrofitting is to improve the seismic behavior of structures. Different retrofit strategies have adopted for seismic retrofitting. A good retrofit scheme is the combination of three distinctive features of a structure, these are: Stiffness, ultimate resistance and deformation capacity. The three retrofit strategies are adopted for the retrofit of the hospital buildings. They are:

- Improving Regularity
- Strengthening
- Increasing Ductility

6.1.1 Improving Regularity

Improvement of geometry, stiffness, resistance and mass distribution in plan and elevation is carried out for the structure such that regularity in the overall structure is created. This includes breakdown of complex configurations like C-type, U-type into simple configurations; addition of walls, slabs to increase stiffness and resistance; and relocation of walls for correcting load paths and uniformity of mass distribution.

6.1.2 Strengthening

Strengthening of the existing structural system through introduction of new building elements, improvement in strength of the existing structural elements increases the resistance and stiffness of the structure. With this strategy, however, deformation capacity is practically unchanged.

6.1.3 Increasing Ductility

Brittle structural elements have made more ductile by reinforced strips or reinforcement jacketing or addition of ductile bracing and frame. With this strategy, the entire deformation capacity is increased while the ultimate resistance and stiffness is only slightly increased.

6.2 SELECTION OF RETROFIT STRATEGIES

In order to ensure building safety, the global and local response of the buildings need to be studied with the use of various seismic strengthening option like RC and Steel jacketing, steel bracing, addition of RC shear wall. Among the different options, the best options are applied. The different retrofit strategies adopted are as follows:

• RC jacketing of column to improve strength, ductility and stability of building.

- Addition of shear wall to improve lateral stiffness of building.
- Steel bracing to improve stability of free standing parapet wall.
- Providing sufficient gap between two adjacent buildings to avoid seismic pounding.

6.3 RETROFIT DESIGN

Based on the retrofitting strategies as in section 6.1, retrofitting of RC frame building is designed. In this section retrofitting design of masonry structure are summarized.

The building is remodeled on ETABS software including applying retrofit options and analyze again. The Indian code IS 1893:2002 and IS 15988:2013 are used during analysis. Both linear static and Response spectrum analysis are performed for retrofitted structure.

6.4 **RETROFIT OPTIONS**

The following retrofitting options are applied in the RCC frame buildings

6.4.1 ADDITION OF SHEAR WALL:

Concrete RC all of thickness 300mm are added at four different locations. Addition of shear wall will increase lateral stiffness, decreases lateral deflection and increase global performance of building.

6.4.2 CONCRETE COLUMN JACKETING:

Concrete jacketing of 100mm thick around concrete column are added for selected column. It will increase lateral stiffness of column and increase local performance of individual columns.

6.5 ANALYSIS RESULT AND DISCUSSION

The analysis results are discussed in this chapter. Simple linear elastic analysis is carried out and Static seismic coefficient method and Response spectrum method are used for earthquake loading. The major discussions are focused on the seismic demand, modal mass participation; inter storey drift and torsional irregularity along the two orthogonal directions. The structural member capacity is then checked for limit state load combination for earthquake loading with their respective seismic demand.

6.5.1 SEISMIC DEMAND

I. Seismic Coefficient Method:

The seismic demand of the building is calculated as per IS 1893:2002. The seismic demand of building is shown in Table 27 below.

Load Pattern	Туре	Direction	Coeff.	Weight Used	Base Shear
			Used	kN	kN
EQX	Seismic	Х	0.225	13920.082	3 32.0 8
EQY	Seismic	Y	0.225	13920.082	3 32.0 8

Table 27: Seismic Demand of Building after retrofit

II. Response spectrum Method:

The seismic demand of the building as per response spectrum method is calculated as,

For the initial run following scale factor was used

$$\frac{I}{R} * \frac{g}{2} = \frac{1}{3} * \frac{9.81}{2} = 2.4525$$

Base shear from this scale factor is computed as:

In global X direction, base shear = $V_B = 2685.95$ kN

In global Y direction, base shear = $V_B = 2556.96$ kN

Which are less than base shear (V_b) from seismic coefficient method and thus, need to be modified as per IS 1893: 2002, clause 7.8.2, the modification factor being:

In global X direction:

$$\frac{V_b}{V_B} = \frac{3132.018}{2685.95} = 1.1661$$

In global Y direction:

$$\frac{V_b}{V_B} = \frac{3132.018}{2556.96} = 1.2249$$

Hence, the modified scale factors to be used are:

For RSx = 2.4525 x1.1661 = 2.8599

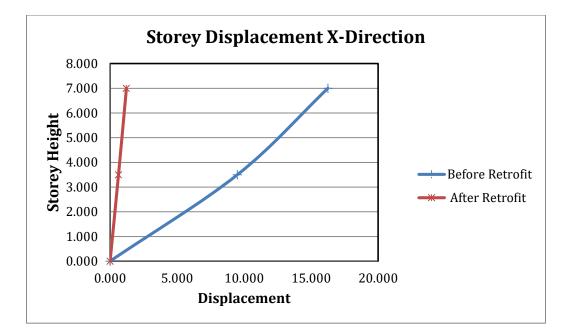
For RSy = 2.4525 x 1.2249= 3.0041

Thus, modified base shear from response spectrum method are:

In global X direction = 3132.018 KN

In global Y direction = 3132.018KN

6.5.2 MODAL TIME PERIOD AND MASS PARTICIPATION


IS 1893: 2002 clause 7.8.4.2 states that number of modes to be used in the analysis should be such that the sum total of modal masses of all modes considered is at least 90 percent of the total seismic mass of the structure. Analysis was carried out for first 90 modes so that the mass participation satisfies this criterion in both orthogonal directions. Table 28 shows time period and mass participation ratio for all modes.

Case	Mode	Period	UX	UY	Sum UX	Sum UY	
Cuse		sec	0		Sum OX		
Modal	-	0.125	0.8561	0.0001	0.8561	0.0001	
Modal	2	0.116	0.0015	7E-06	0.8576	0.0001	
Modal	3	0.11	0.0001	0.0001	0.8577	0.0001	
Modal	4	0.105	0.0006	0.0004	0.8582	0.0005	
Modal	5	0.102	4.7E-05	0.0024	0.8583	0.0029	
Modal	6	0.098	0.0001	0.8157	0.8584	0.8186	
Modal	7	0.098	0.0001	0.0009	0.8585	0.8195	
Modal	8	0.094	0.0001	0.0015	0.8586	0.821	
Modal	9	0.092	0	0.0042	0.8586	0.8252	
Modal	10	0.087	0.0001	0.0011	0.8587	0.8263	
Modal	87	0.035	4.3E-05	0.0017	0.9879	0.979	
Modal	88	0.035	I.3E-05	0.0023	0.9879	0.9813	
Modal	89	0.035	4.2E-05	0.0001	0.9879	0.9814	
Modal	90	0.034	3.9E-06	7.3E-06	0.988	0.9814	

Table 28: Modal time period and mass participation after retrofit

6.5.3 STOREY DISPLACEMENT AND DRIFT

As per Cl. no. 7.11.1 of IS 1893-2002, the storey drift in any storey due to specified design lateral force with partial load factor of 1.0, shall not exceed 0.004 times the storey height. In this building the storey drift is limited to 14.0 mm. From the analysis the displacements of the mass centre of various floors are obtained and are shown in Table 29 along with storey drift.

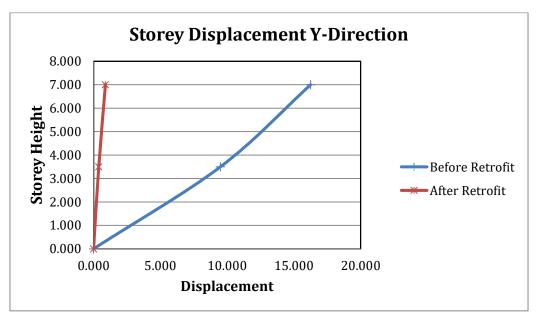


Figure 23: Storey Displacement Comparison

Storey	Elevation	Storey Displacement (mm)		Storey drift (%)	
	m	X Dir'n	Y Dir'n	X Dir'n	Y Dir'n
Storey2	7.000	1.212	0.881	0.017	0.014
Storeyl	3.500	0.624	0.387	0.018	0.011
Base	0.000	0.000	0.000	0.000	0.000

Table 29: Storey Drift Calculations after retrofit

It is seen that drift does not exceed the code prescribed value of 0.004 times storey height (i.e. permissible storey displacement is 14.00 mm). Thus the drift check seems to comply with the safety value mentioned in the code.

6.5.4 CHECK FOR ADJACENT BUILDINGS

As per IS 1893:2002 part I, CI, 7.11.3, torsional two adjacent buildings or two adjacent units of the same building with separation joint in between shall be separated by a distance equal to the amount R times the sum of the calculated storey displacements as per IS 1893:2002(Part I) cl.7.11.1 of each of them, to avoid damaging contact when the two units deflect towards each other. When floor levels of two similar adjacent units or buildings are at the same elevation levels, factor R in this requirement may be replaced by R/2.

The seismic gap required between CT scan and ENT blocks is shown in Table 30below.

	CT Scan	ENT	
Total Displacement	0.88mm	1.00mm	
Response reduction Factor (R)	3		
Gap required:	(0.880+1.00)*3/2 = 2.82 mm		

Table 30: Requirement of Seismic Gap after retrofit

The seismic gap required between CT scan and ENT blocks is 50mm and existing gap between two blocks is less than 25mm. Thus the building separation check seems to comply with the safety value mentioned in the code.

6.5.5 CHECK FOR TORSIONAL IRREGULARITY

As per IS 1893:2002 part I, torsional irregularity to be exit when the maximum storey drift, computed with design eccentricity, at one end of the structures transverse to an axis is more than 1.2 times the average of the storey drift at the two ends of the structure. The torsional irregularity check is presented in Table 31 below which complies with the codal provision.

Storey	Load Case	Direction	Maximum mm	Average mm	Ratio
Storey 2	EQX	Х	0.806	0.694	1.161
Storey I	EQX	Х	0.675	0.649	1.039
Storey 2	EQY	Y	0.497	0.481	1.034
Storey I	EQY	Y	0.387	0.382	1.011

Table 31: Torsional Irregularity Check after retrofit

6.5.6 COLUMNS CAPACITY DEMAND CHECK

The seismic demand of each structural member (Columns) for earthquake loading as explain above under heading seismic load are computed and Structural members capacity are checked for earthquake demand. The demand capacity ratio below one "1" means the structural member is safe and above one "1" means the structural member is unsafe. The demand capacity ratios for structural members are shown in Figure 24 and Figure 25 below.

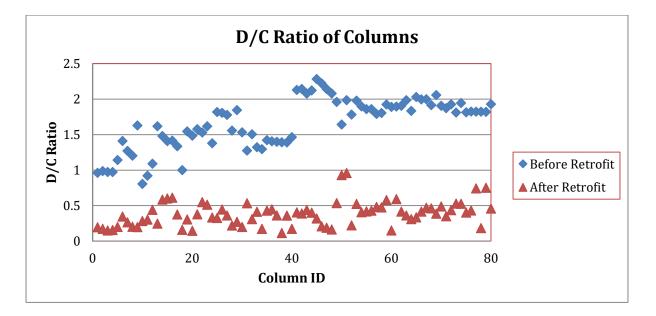


Figure 24: Demand Capacity Ratio of Structural Member (Column) after Retrofit

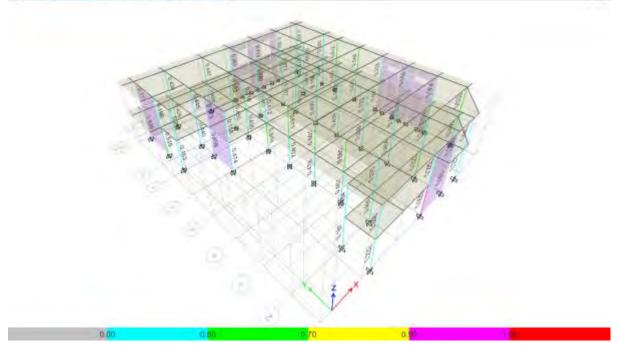


Figure 25: Demand Capacity Ratio of Structural Member (Column) after retrofit

6.6 DESIGN OF SHEAR WALL

The shear wall is designed in ETABS. The shear wall design is also manually checked. The sample design output of shear wall is presented below.

1.0	Given Data:			
	Axial Force	(P_{u})	955.440	kN
	Shear Force	(V_u)	110.860	kN
	Moment	$\left(M_{u}\right)$	789.170	kN-m
2.0	Material Constant:			
	Grade of Concrete	(M)	25	Мра
	Grade of Steel	(Fe)	415	Мра
	Elastic Modulus of Steel	(E_{s})	200000	Мра
3.0	Preliminary Dimension			
	Length of Wall	(I_w)	3370	mm
	Thickness of Wall	(t_w)	300	mm
	Height of Wall	(h _w)	3500	mm
	Check for thickness as Per IS 13920:19	93 CI 9.	1.2	
		>	150	mm

- X

Effective Depth of Wall Section	(d _w)	Ok 0.8*I _w 2696 mm	
4.0 Vertical Reinforcement:			
Axial Force	(P_{u})	955.44 kN	
	$P_u =$	$0.87 f_y A_{st}$	
Area of Reinforcement Required	(A_{st})	785 mm²/m	
Provided	(A _{st})	I2 mm φ @	150 c/c spacing
no of layers	(n)	2	
Provided	(A _{st})	1508 mm²/m Ok	
	(P _t)	0.503 %	
Minimum reinforcement ratio	As per	· IS13920 Cl. 9.1.4	
	(P _t)min	0.25 %	
		Ok	
5.0 Horizontal Reinforcement: Factored Shear Force As per IS 13920:1993 Cl. 9.2.1		110.860 kN $v = \frac{V_u}{t_w d_w}$	
	(τ_v)	0.138 N/mm ²	
	(P _t)	0.503 %	
From IS 456 Table 19			
	(β)	5.775	
Maximum Shear Strength of Concrete	$(\tau_{c,max})$	3.1 N/mm ²	
	(τ_v)	< ($ au_{c,max}$) Section Ok	
Design Shear Strength of Concrete	(τ_c)	0.49 N/mm ²	
	(τ_v)	< (t _c)	
		Design for Shear Re	einforcement
Excess Shear Force	(V_{us})	0.000 kN	
Shear Reinforcement Required	(A_{us})	0 mm²/m	
Horizontal Reinforcement Required	(A_{st})	750 mm ² /m	
Provide	(A_{st})	10 mm φ @	150 c/c spacing
No of layers	(n)	2	
Provided	(A _{st})	l047 mm²/m Ok	

6.0 Flexural Strength:

Moment of Resistance of Shear wall as per IS 13920:1993 Annex A Vertical reinforcement ratio

$\rho = \frac{A_{st}}{t_w l_w}$	ρ	0.005
$\Phi = \frac{0.87 f_y \rho}{f_{ck}}$	φ	0.073

$$\beta = \frac{0.87 f_y}{0.0035 E_s} \qquad \beta \qquad 0.516$$

$$\lambda = \frac{P_u}{f_{ck} t_w l_w} \qquad \qquad \lambda \qquad 0.0378$$

$$\frac{x_u}{l_w} = \frac{\phi + \lambda}{2\phi + 0.36} \qquad \qquad x_u / l_w = \qquad 0.219$$

$$\frac{x_u^*}{l_w} = \frac{1}{(1+\beta)} \qquad \qquad x_u^* / l_w = \qquad 0.660 \\ x_u / l_w < \qquad x_u^* / l_w$$

Case I : When $(x_u / I_w) < (x_u^* / I_w)$

$$\frac{M_{uv}}{f_{ck} \ l_{w} l^{2}_{w}} = \phi \left[\left(1 + \frac{\lambda}{\phi} \right) \left(\frac{1}{2} - 0.416 \ \frac{x_{u}}{l_{w}} \right) - \left(\frac{x_{u}}{l_{w}} \right)^{2} \left(0.168 + \frac{\beta^{2}}{3} \right) \right]$$

$$\begin{array}{c} M_{uv} \qquad 2413 \quad kN-m \\ M_{u} \qquad < \qquad M_{uv} \\ \text{Section Safe in Flexure} \end{array}$$

7.0 Boundary Element Check:

As per IS 13920:1993, Cl. 9.4.1, where the extreme compressive stress in the wall due to factored gravity loads plus factored earthquake force exceeds 0.2 fck, boundary elements shall provid along the vertical boundaries of the walls.

Ag	1011000	mm ²
ly	9.57E+11	mm ⁴
\mathbf{f}_{c}	2.335	N/mm ²
$0.2 f_{\text{ck}}$	5.000	N/mm ²
	Ι _γ f _c	Ag 1011000 Iy 9.57E+11 fc 2.335 0.2fck 5.000

No Boundary Element Required

6.7 CONCLUSION AND RECOMMENDATION

Seismic analysis and retrofit design of the building has performed through computer simulations, review of existing documents site visit and material testing. Special Reinforced Concrete Shear wall is found to be more viable, economical and easy to use for constructability. The reinforced concrete shear wall element is added only at the exterior faces that will make minimum service interruption on operation of hospital buildings. Deficiencies noted during detail seismic assessment are corrected to satisfy the building code requirements.

The followings retrofit options are recommended.

- Addition of 300 mm thick Concrete shear wall at grid location 1 (D-E), 9 (D-F) A (8'-9), B (6-7) and G (3-5) (Refer drawing for location of shear walls)
- Concrete jacketing of existing columns at ends of newly added shear walls.
- Protection of nonstructural elements by proper connection and anchoring

Masonry Buildings

7 DETAILED SEISMIC ASSESSMENT FOR MASONRY BUILDING

7.1 BACKGROUND

The detail seismic assessment is performed to determine the probable strength of the lateral load resisting system and compare with expected seismic demand on the members. To understand the geology and engineering properties of existing soil at the specific locations of the buildings located at WRH, geotechnical investigation is carried out. Likewise, with an evaluation for material strength and condition for building material, material testing is conducted at desired locations. Also numerical modeling is done to estimate the probable flexure and shear demand capacity ratio of the structural elements calculated as per IS 1905 – 1987, IS 15988-2013. The demands to capacity ratio for critical elements like wall piers, columns, diaphragms etc. are calculated in this assessment. The process is further outlined in following sections.

The detail seismic assessment is performed to assess the seismic behavior of the buildings It is a qualitative assessment and more comprehensive assessment than the conditional assessment described in previous chapter. In this process, the probable strength of the lateral load resisting system is determined and compared with expected seismic demand on the members. The DSA process is based on the Indian Standard Code of Practice and Nepal building codes (NBC).

7.2 METHODOLOGY

The detailed seismic assessment is basically based on structural modeling and analysis. For the modeling of the building, commercial structural analysis Finite element based ETABS software was used. The masonry buildings are analyzed based on NBC. The detailed seismic assessment includes the following process.

- I. Selection of material/design parameter and analysis approach
- 2. Load assessments
 - a. Dead load
 - b. Live Load
 - c. Seismic Load
- 3. Numerical Modeling
- 4. Results and discussion
- 5. Finding and Recommendation

7.3 MATERIAL PARAMETER

The typologies of building structure found in hospital are load bearing stone masonry in cement mortarand reinforce concrete frame building. Some none destructive tests are conducted in the field to findNHSSPASSESSMENT AND RETROFIT DESIGN REPORT OF WRHId2

the existing condition and engineering parameter of building material. Some building parameters obtained from tests are compressive strength of cement sand mortar, shear strength of Stone masonry, compressive strength of concrete. The test results adopted for further analysis are tabulated below.

S.N.	Parameter	Test Result	Adopted Value	Units	Remark
	Compressive strength of cement sand mortar	3.5	3.5	Мра	As per IS Code, M2 Mortar Grade
2	Shear Strength of Stone masonry Wall	0.31	0.217	Мра	From test data applying knowledge factor of 0.7 as per IS Code I 5988
3	Compressive strength of concrete	27	15	Мра	Applying knowledge factor as per IS Code 15988

Table 32: Parameter Adopted from NDT/DT Test

The material parameters adopted for analysis of buildings are listed below.

Table 33: Mechanical Properties of Stone Masonry

Compressive Strength:	2.5	N/mm ²
Permissible Tensile strength:	0.12	N/mm ²
Shear Strength:	0.31	N/mm ²
Knowledge Factor (K):	0.7	
Permissible shear strength:	0.21	N/mm ²
Modulus of elasticity of stone masonry:	1740	N/mm ²
Unit Weight:	25	KN/m ³
Poisson's ratio for stone masonry:	0.2	

Since, there are lacks of codes and standard for mechanical parameters of stone masonry, the mechanical parameters adopted are as per international guideline and research paper. (Reference: Guidelines for The Seismic Assessment of Stone-masonry Structures, July 2000, and Michele Betti and Luciano Galano; Seismic Analysis of Historic Masonry Buildings: The Vicarious Palace in Pescia (Italy))

Concrete grade:(M)	M15	M20	M25	
Young's modulus for Concrete:	19365	22360	25000	N/mm ²
Poisson's ratio for concrete :		0.2		
Unit Weight:		25		KN/m ³
Cha. Compressive Strength:	15	20	25	N/mm ²

Table 34: Mechanical Properties of Concrete (As Per IS Code)

7.4 CODE AND STANDARD

The following Indian Standard Codes of Practices, Nepal Building Codes and other guidelines are considered for creation of mathematical model, analysis and check of the structure:

- IS 456:2000 Plain and reinforced concrete : Code of Practice
- IS 1893:2002 Criteria for earthquake resistant design of structures
- IS 13920:1993 Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces – Code of Practice
- IS 875:1998 (Part I) Code of Practice for Design Loads (Part I: Dead Loads)
- IS 875:1998 (Part II) Code of Practice for Design Loads (Part II: Imposed Loads)
- IS 13935 : 2009 Seismic Evaluation, Repair and Strengthening of Masonry Buildings Guidelines
- Nepal Building Codes
- Guidelines for The Seismic Assessment of Stone-masonry Structures

7.5 LOAD AND LOAD CASES

7.5.1 DEAD LOAD

The loads on the building are based on Indian codes of Practices. The unit weight of different structural and non-structural elements are derived from IS 875 Part I and presented in Table II. The load calculations are based on actual measured drawings.

- The weight of infill walls are calculated based on measured drawings and applied on beams as line weight in kN/m.
- Partition wall load are assigned as uniformly distributed area load in slab as area load in kN/m².

• Floor finishing load are calculated for Mosaic tile finishing and assigned as area load in slab assuming 40 mm thick concrete screeding and 12.5 mm thick plaster and 25 mm thick tile.

The self-weight of the structural elements is automatically calculated by the software using the density assigned for the material. The detail loads are calculated on spreadsheets and are attached in Annex.

Туре	Value
Reinforced Concrete	25 KN/m ³
Stone Masonry	25 KN/m ³
Screed	20.4 KN/m ³
Plaster	20.4 KN/m ³
Mosaic Tile	20.4 KN/m ³

Table 35: Unit Weight of Materials Used

7.5.2 LIVE LOADS

The live load considered for various usage of space are taken as per codal provision in IS: 875 (part 2), 1987. According to code the live load adopted for analysis of structure are presented in Table 36below.

Table 36: Live Load used as per IS 875 (part II) - 1987

S.N	Area type	Load	Unit
I	Bed rooms/wards, dressing rooms, dormitories and lounges	2.00	KN/m ²
2	Kitchens, Laundry is and Laboratories	3.00	KN/m ²
3	Toilets and bathrooms	2.00	KN/m ²
4	X-ray rooms, Operating rooms	3.00	KN/m ²
5	Office rooms, OPD rooms	2.50	KN/m ²
6	Corridors, Passages, Lobbies and staircases	4.00	KN/m ²
7	Boiler rooms and Plant rooms	5.00	KN/m ²
8	Store	5.00	KN/m ²
9	Terrace live load (accessible)	1.50	KN/m ²
10	Terrace live load (non-accessible)	0.75	KN/m ²
65	ASSESSMENT AND RETROEIT DESIGN REPORT OF WRH		NHSSP

65| ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

7.6 SEISMIC LOAD

Static coefficient method is considered for the calculation of seismic demand for masonry structure. Seismic demand is calculated as per NBC 105 and IS 1893. The higher seismic demand between NBC and IS code is taken for further analysis.

7.6.1 AS PER NBC 105

To determine the seismic load, it is considered that the site lies in the seismic zone Pokhara according to NBC 105. The soil type is considered as medium with 5% damping to determine average response acceleration. The building is analyzed load bearing masonry wall. Therefore, the fundamental time period T_a is obtained by using the following formula:

Ta = $\frac{0.09h}{\sqrt{D}}$ [Cl.7.3.b, NBC 105:1994]

Other factors considered for seismic load calculations are as follows

Zone factor, Z = 1.0 for Pokhara [Fig. 8.2, C | 8.1.6, NBC 105:1994]

Importance factor, *I* = 1.5 [Table 8.1, Cl. 8.1.7, NBC 105:1994]

Structural Performance Factor, K = 4 for Load bearing masonry [Table 8.1, Cl. 8.1.8, NBC 105:1994]

Detailed calculation is presented in Table 38 below.

7.6.2 AS PER IS1893:2002

To determine the seismic load, it is considered that the country lies in the seismic zone V according to IS 1893:2000. The soil type is considered as medium with 5% damping to determine average response acceleration. The building is analyzed as ordinary moment resisting frame without consideration of infill wall. Therefore the fundamental time period T_a is obtained by using the following formula:

$$Ta = \frac{0.09h}{\sqrt{D}} [CI.7.6.2, IS \ I893 \ -2002]$$

Other factors considered for seismic load calculations are as follows

Zone factor, Z = 0.36 for Zone V [Table 2, Cl6.4.2, IS 1893 -2002]

Importance factor, *I* = 1.5 [Table 6, Cl6.4.2, IS 1893 -2002]

Response Reduction Factor = 1.5for load bearing masonry [Table 6, Cl6.4.2, IS 1893 -2002]

Detail Calculation is presented in Table 39 below.

The seismic weight is determined based on the following load factors. [Table 6.1, Cl.6.0.0, NBC 105:1994 and/or Table 8, Cl.7.9.2, IS 1893 (Part 1):2002]

S.N	Load Type	Scale Factor
I	Dead Load	I
2	Live Load > 3	0.50
3	Live Load < 3	0.25
4	Roof Live Load	Nil

Table 37: Load factors for seismic weight

Seismic zone			Pokhara	
Seismic Zone factor	Z	Cl. 8.1.6, fig 8.2	I	
Type of Building			Hospital Building	
Importance factor	I	Cl.8.1.7, table 8.1	1.5	
Lateral load resisting system			Load Bearing Masonry	
Structural performance factor	К	Cl. 8.1.8, table 8.2	4	
Height of the building	h		3.77	m
Dimension of the building Along X	D _x		36.60	m
Dimension of the building Along Y	Dy		12.24	m
Time period of the building along X	T=0.09h/ $\sqrt{D_{x}}$	Cl. 7.3	0.056	sec
Time period of the building along Y	T=0.09h/ $\sqrt{D_y}$	Cl. 7.3	0.097	sec
Soil type			Type II (Medium Soil)	
Basic seismic coefficient	С	Cl. 8.1.4, fig 8.1	0.080	
Design Horizontal Seismic Coefficient along X	Cd = CZIK	Cl. 8.1.1	0.480	
Design Horizontal Seismic Coefficient along Y	Cd = CZIK	Cl. 8.1.1	0.480	

Table 38: Design Horizontal Seismic Coefficient as per NBC-105-1994 (OPD Block II)

Seismic zone			V (Very Sever)-Nepa	ıl
Seismic Zone factor	Z	Cl. 6.4.2, Table 2	0.36	
Type of Building			Hospital Building	
Importance factor	I	Cl. 6.4.2, Table 6	1.5	
Lateral load resisting system			Load Bearing Masonr	у
Response Reduction factor	R	Cl. 6.4.2, Table 7	1.5	
Height of the building	h		3.77	m
Dimension of the building Along X	D _x		36.60	m
Dimension of the building Along Y	Dy		12.24	m
Time period of the building Along X	T=0.09h/ $\sqrt{D_x}$	Cl. 7.6.2	0.056	sec
Time period of the building Along Y	T=0.09h/√D _y	Cl. 7.6.2	0.097	sec
Soil type			Type II (Medium Soil)	
Average response accl'n coefficient Along X	Sa/g	Cl. 6.4.2, fig 2	1.858	
Average response accl'n coefficient Along Y	Sa/g	Cl. 6.4.2, fig 2	2.455	
Design Horizontal Seismic Coefficient Along X	$A_{hx} = \frac{Z}{2} \frac{S_a}{g} \frac{I}{R}$	Cl. 6.4.2	0.3345	
Design Horizontal Seismic Coefficient Along Y	$A_{hx} = \frac{Z}{2} \frac{S_a}{g} \frac{I}{R}$	Cl. 6.4.2	0.4419	

Table 39: Design Horizontal Seismic Coefficient as per IS 1893:2002 (OPD Block II)

The seismic demand as per NBC is 0.48 and as per IS code 0.44. NBC 105 gives higher seismic demand. Hence, 0.480 Horizontal Seismic Coefficient as per NBC 105 is taken for analysis of masonry structure.

69 ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

7.7 LOAD COMBINATIONS

Working stress method of analysis and design is adopted for the masonry buildings i.e. for T1 Typology. Load combinations for the analysis are adopted as per NBC 105: 1994.

A) Static Load Combination:

(DL + LL)

B) Seismic Load Combination:

DL +LL + EQ

0.7 DL +EQ

DL + SL + EQ

7.8 STRUCTURAL MODELLING

The Structure is modeled using finite element method. A three-dimensional beam element having 12 DOF with 6 DOF at each node were used for modeling beams and columns in the building, while 24DOF shell element with 6 DOF at each node were used to model masonry wall and RC floor slab. The structural models are prepared in finite element modeling software, ETABS 2016 V 16.2.1.

Following considerations is made during modeling, analysis and design.

- Centre line model of structure are done. The joint eccentricities are not considered.
- Beams, columns are modeled as line element and slab and walls are modeled as shell elements.
- Slabs are modeled as thin shell element.
- RC slabs are modeled as rigid floor. All loads such as imposed loads, partition wall load, floor finishing loads etc. are applied on slab as uniformly distributed area load.
- All the supports are hinge at plinth level. Hinge supports conditions are assigned for masonry walls.
- Partition wall are not considered in modeling but their weight are calculated and applied as area load on slab panel.
- Staircase cover is not considered in modeling. But, load from staircase cover was calculated and applied at corresponding columns as point load.
- No ties beams are modeled. So ground floor wall and partition loads are not added, hence considered passing on the foundation directly.
- Structural member sizes are modeled as per field measurement.

The detail modeling parameters and assumptions made are described in following heading.

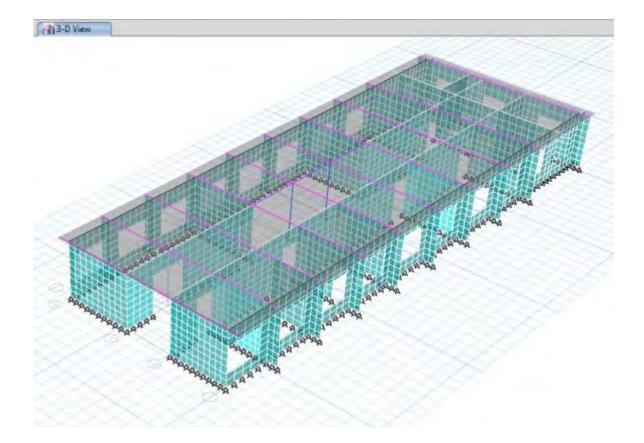


Figure 26: 3D Model of Building

7.9 METHOD OF ANALYSIS

The detail seismic evaluation is performed to determine the probable strength of the lateral load resisting system and compare with expected seismic demand on the members. The probable strength calculated from conventional methods is modified with the factor k, known as the knowledge factor (for Western Regional Hospital, k is taken 0.7). The seismic demand is calculated based on IS1893 (Part 1) and NBC 105 for lateral forces utilizing the factors for reducible seismic demands. (U=1 for Western Regional Hospital, as per IS 15988: 2013 for building with critical safety) Under this process a full building analysis is performed, the evaluation requirements are based on linear static analysis described on the subsequent section as per Indian standards and Nepal Building Code.

7.10 CHECKFOR MASONRY STRUCTURE

I. CHECK FOR SHEAR (INPLANE LOADING)

The shear wall strength shall be calculated as follows:

$$V_a = \tau_a Dt$$

Where: D = In-plane length of masonry wall (mm)

71 ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

t = thickness of wall (mm)

 τ_a = permissible masonry shear strength (MPa)

II. IN-PLANE AND OUT OF PLANE STRESS CHECK

Efforts have been made to check the stress of existing masonry walls in both in plane and out of plane directions. The structures have been analyzed in ETABS for all the loadings and the in-plane vertical and horizontal stresses (S11 and S22) and out of plane horizontal and vertical bending stress (M11 and M22) due to the load combinations have been observed in all the critical locations against the permissible limits.

III. INTER-STOREY DRIFT

The storey drift is checked for load combinations of earthquake in each direction. The permissible limit of inter-storey drift as specified by the IS code is 0.4%

7.11 RESULT AND DISCUSSION

The analysis results are discussed in this chapter. Simple linear elastic analysis is carried out and Static seismic coefficient method is used for earthquake loading. The major discussions are focused on the seismic demand and inter storey drift along the two orthogonal directions. The In-plane direct stresses as well as out plane bending stresses for working stress load combination for earthquake loading are checked with their respective permissible stress.

7.11.1 SEISMIC DEMAND

The seismic demand of the building is calculated as per NBC 105. The seismic demand of building is shown in Table 40 below.

Load Pattern	Туре	Direction	С	К	Weight Used	Base Shear
					kN	kN
EQX	Seismic	Х	0.48	Ι	9432.40	4527.55
EQY	Seismic	Y	0.48	Ι	9432.40	4527.55

Table	40:	Seismic	Demand	of	Building
-------	-----	---------	--------	----	----------

7.11.2 STOREY DISPLACEMENT AND DRIFT

As per cl. no. 9.3 of NBC 105:1994, the ratio of the inter storey deflection to the corresponding storey height shall not exceed 0.010 nor shall the inter storey deflection exceed 60mm. In this building the storey drift is limited to 37.70 mm. From the analysis the displacements of the mass centre of various floors are obtained and are shown in Table 41 along with storey drift.

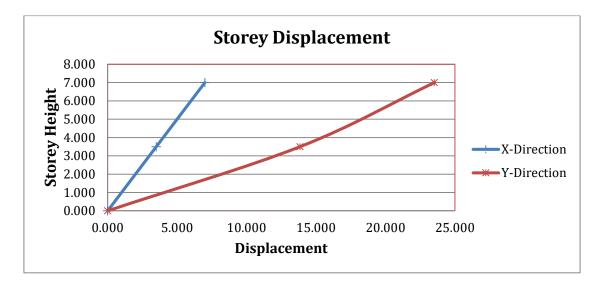


Figure 27 : Storey Displacement Check

Table 41: Storey	Drift Calculations
------------------	--------------------

Storey	Elevation	Storey Displacement (mm)		Elevation Storey Displacement		Storey o	lrift (%)
	m	X Dir'n Y Dir'n		X Dir'n	Y Dir'n		
FF	3.77	1.62	1.65	0.043	0.044		
GL	0.000	0.00	0.00	0.000	0.000		

It is seen that drift does not exceed the code prescribed value of 0.010 times storey height (i.e. permissible storey displacement is 37.70 mm). Thus the drift check seems to comply with the safety value mentioned in the code.

The ultimate deflections of building for lateral load are calculated as per NBC 105 by multiplying elastic deflection by factor 5/ K

Where, K = structural performance factor = 4

The ultimate deflections for different blocks are presented in Table 42 below.

Storey	Elevation	Displacement (mm)		
	(m)	X-Dir	Y-Dir	
FF	3.770	2.030	2.060	
GL	0.000	0.000	0.000	

Table 42: Ultimate Deflection

As per cl. no. 9.2.2 of NBC 105:1994, two different buildings shall be separated from each other by a distance of not less than the sum of the design lateral deformations or 0.004hi or 50mm whichever is the greater. The seismic gap required between two OPD blocks is shown in Table 43 below.

Table 43: Requirement of Seismic Gap

Storey	Elevation (m)	Displacen	nent (mm)	0.004hi	
Storey Elevation (III)		Block I	Block II	0.00111	
FF	3.770	3.610	2.030	0.004*3770	
Gap Required =		3.610+2.030 = 5.640 mm		15.080 mm	50mm

The seismic gap required between two OPD blocks is 50mm and existing gap between two blocks is 100mm. Thus the building separation check seems to comply with the safety value mentioned in the code.

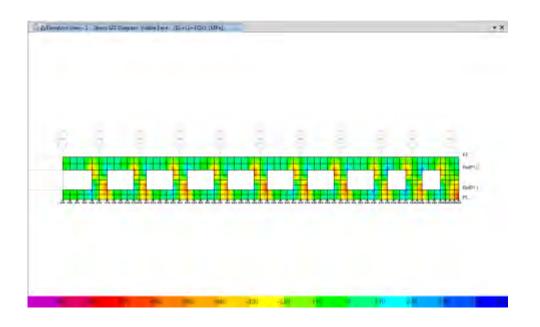
7.11.3 STRESS CHECKS

Even though, the primary function of masonry elements is to sustain vertical gravity load, structural masonry elements are required to withstand combined shear, flexure and compressive stresses under earthquake or wind load combinations consisting of lateral as well as vertical loads. In this study, the shear stress, tensile stress and compression stress for working stress load combination for earthquake loading are checked with their respective permissible stress.

Even stone masonry structures are commonly practiced in Nepal especially hilly regions, there are lack of experimental mechanical properties of stone masonry and guidelines and codes for stone masonry structures. For this assessment the permissible strength for stone masonry are taken from above mentioned international guidelines and journal papers which are based on experimental data and resemble our conditions and type of stone masonry.

A. In Plane Shear Strength Check

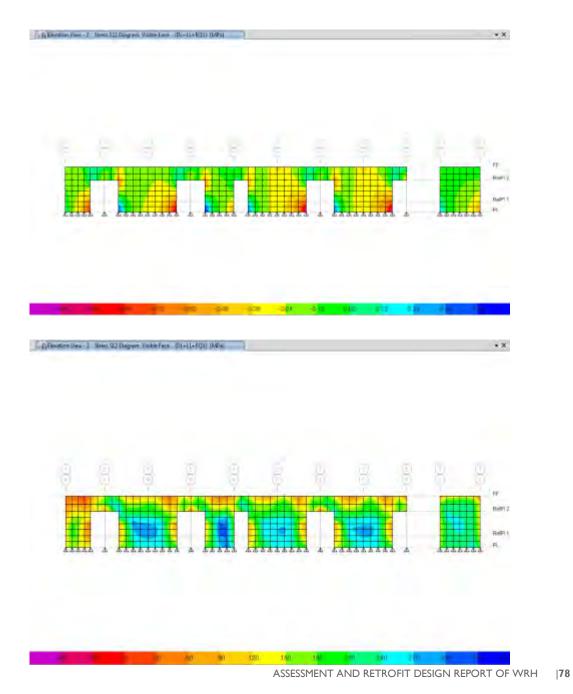
	A.Shear Stress induced in wall						B. Shear strength of wall	Check
Grid	Length of Wall	Thk. (t)	Length of opening (lo)	Area of wall (A)	Shear force in wall (from Analysis)	Average shear stress in wall (fvi)	Allowable shear strength value (as per test value)	
	(L)				(Fv)	N1/ 2		
	m	mm	m	m ²	kN	N/mm ²	N/mm ²	
Grid, I-I	35.17	400	20.11	6.02	1036.16	0.172	0.217	Safe
Grid, 2-2	32.33	250	8.85	5.87	1324.43	0.226	0.217	Unsafe
Grid, 3-3	17.95	250	5.05	3.23	725.16	0.225	0.217	Unsafe
Grid, 4-4	35.17	400	17.70	6.99	1243.69	0.178	0.217	Safe
Grid, K-K	8.85	400	0.00	3.54	698.76	0.198	0.217	Safe
Grid, L-L	6.55	250	0.00	1.64	272.22	0.166	0.217	Safe
Grid, M-M	5.32	400	0.00	2.13	237.39	0.112	0.217	Safe
Grid, N-N	9.23	400	0.00	3.69	626.88	0.170	0.217	Safe
Grid, O-O	5.75	400	0.00	2.30	395.52	0.172	0.217	Safe
Grid, P-P	5.75	400	0.00	2.30	49.21	0.021	0.217	Safe
Grid, Q-Q	4.15	250	0.00	1.04	174.69	0.169	0.217	Safe
	6.30	400	0.00	2.52	438.61	0.174	0.217	Safe
Grid, R-R	1.60	400	0.00	0.64	38.84	0.061	0.217	Safe
Grid, S-S	10.45	400	0.00	4.18	694.85	0.166	0.217	Safe
Grid, T-T	12.24	400	5.08	2.87	438.55	0.153	0.217	Safe
Grid, U-U	13.84	400	4.99	3.54	515.14	0.146	0.217	Safe

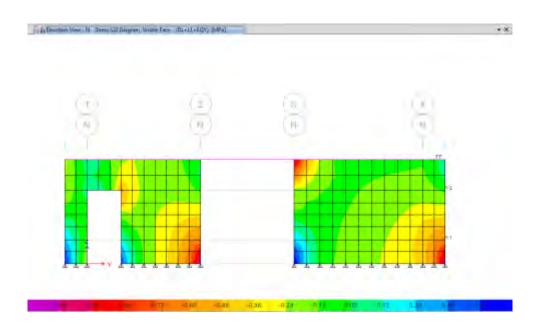

The shear forces induced in each structural wall are calculated using computer software and checked with shear capacity of wall (as per in-site shear strength test result). Most of the walls are found safe in average shear strength check except grid 2 and 3.

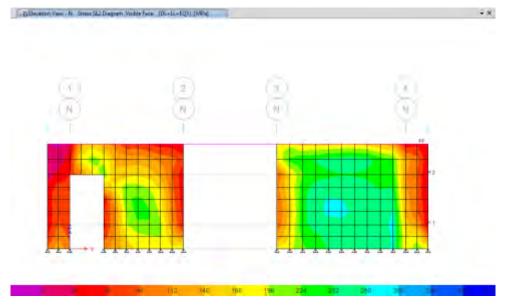

B. In Plane Strength Check

The stresses induced due to the application of in plane earthquake loading are checked with permissible stress. The maximum stresses induced in some of critical wall are presented below.

G	ri	d	-	

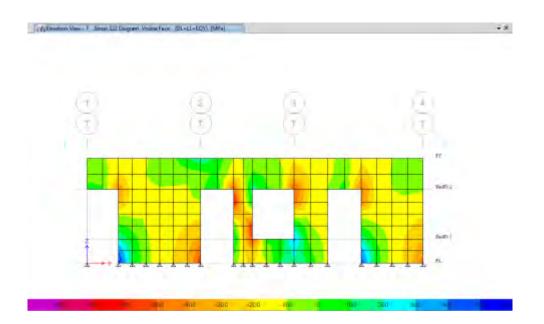

Load Case	DL+LL+EQ X	DL+LL-EQX	0.7DL +EQX	0.7DL -EQX	Max	Check
Compressive Stress: (S22)	1.07	1.04	0.89	0.9	1.07	ok
Tensile Stress: (S22)	0.49	0.46	0.58	0.53	0.58	Not ok
Shear Stress: (S12)	0.38	0.38	0.35	0.35	0.38	Not ok

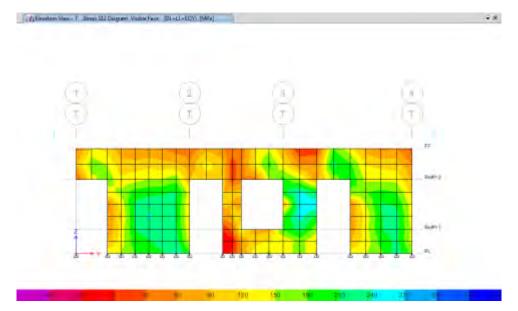

G	rid	2-2


Load Case	DL+LL+EQ X	DL+LL-EQX	0.7DL +EQX	0.7DL -EQX	Max	Check
Compressive Stress: (S22)	1.16	1.14	1.01	0.99	1.16	ok
Tensile Stress: (S22)	0.58	0.54	0.68	0.62	0.68	Not ok
Shear Stress: (S12)	0.35	0.33	0.33	0.38	0.38	Not ok

|--|

Load Case	DL+LL+EQY	DL+LL-EQY	0.7DL +EQY	0.7DL -EQY	Max	Check
Compressive Stress: (S22)	1.14	1.24	1.03	1.12	1.24	ok
Tensile Stress: (S22)	0.6	0.58	0.71	0.69	0.71	Not ok
Shear Stress: (S12)	0.38	0.32	0.33	0.3	0.38	Not ok



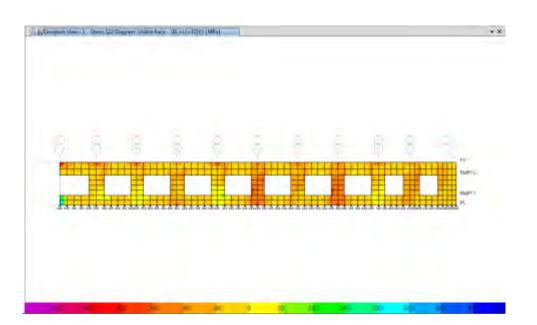


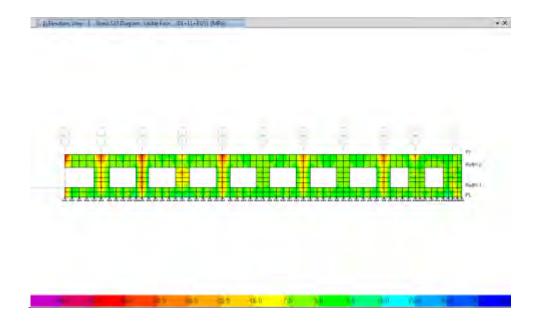
79 ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

G	ri	d	Т	-	Γ

Load Case	DL+LL+EQY	DL+LL-EQY	0.7DL +EQY	0.7DL -EQY	Max	Check
Compressive Stress: (S22)	0.88	0.98	0.76	0.89	0.98	ok
Tensile Stress: (S22)	0.53	0.42	0.63	0.53	0.63	Not ok
Shear Stress: (S12)	0.35	0.35	0.33	0.33	0.35	Not ok

ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

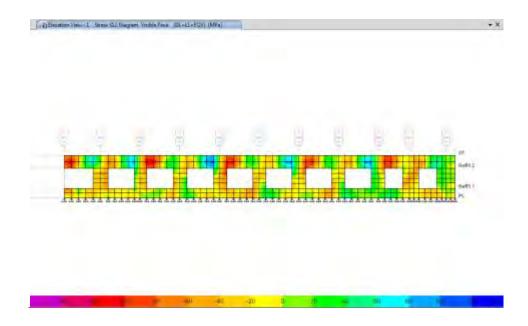

C. Out of Plane Strength Check


The stresses induced due to the application of out of plane earthquake loading are checked with permissible stress. The stresses are checked for bending stresses due to out of plane vertical and horizontal bending and shear stress. The maximum stresses induced in some of critical wall are presented below.

Grid I-I

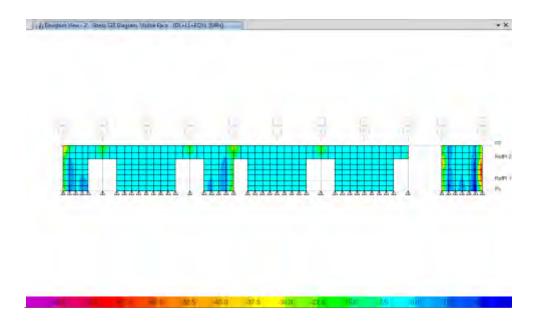
Load Case	DL+LL+EQY	DL+LL-EQY	0.7DL +EQY	0.7DL -EQY	Max	Check
Compressive Stress: (S22)	0.54	0.9	0.47	0.85	0.85	ok
Tensile Stress: (S22)	0.49	0.18	0.43	0.2	0.49	Not ok
Shear Stress: (S23)	0.06	0.05	0.06	0.05	0.06	ok


Out of plane Stress Analysis (Vertical Direction)



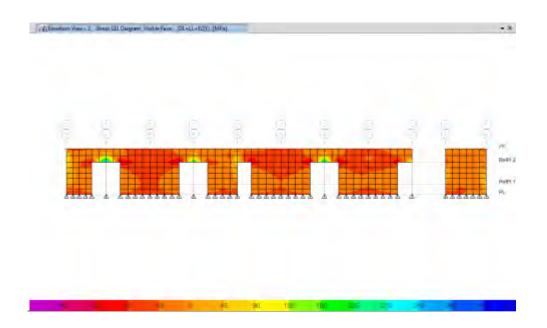
Out of plane Stress Analysis (Horizontal Direction)

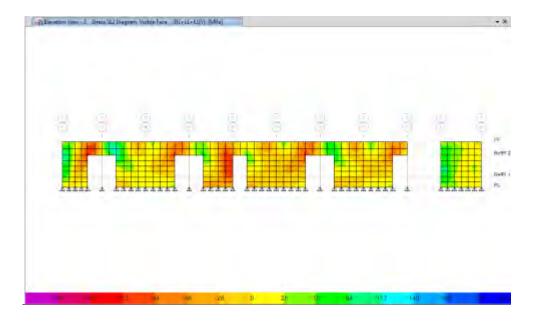
Load Case	DL+LL+EQY	DL+LL-EQY	0.7DL +EQY	0.7DL -EQY	Max	Check
Compressive Stress: (SII)	0.28	0.31	0.31	0.29	0.31	ok
Tensile Stress: (SII)	0.31	0.36	0.29	0.34	0.36	Not ok
Shear Stress: (SI2)	0.16	0.21	0.17	0.2	0.21	Not ok



<u>Grid 2-2</u>

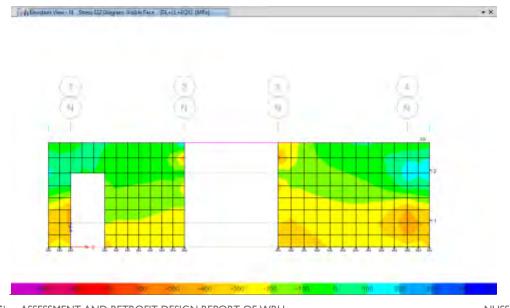
Out of plane Stress Analysis (Vertical Direction)


Load Case	DL+LL+EQY	DL+LL-EQY	0.7DL +EQY	0.7DL -EQY	Max	Check
Compressive Stress: (S22)	1.09	1.28	1.00	1.17	1.28	ok
Tensile Stress: (S22)	0.14	0.59	0.84	0.69	0.84	Not ok
Shear Stress: (S23)	0.09	0.13	0.09	0.12	0.13	ok

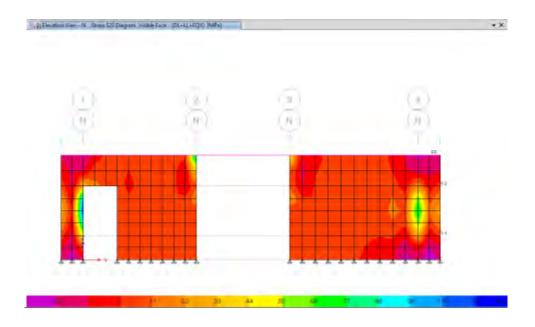


Out of plane Stress Analysis (Horizontal Direction)

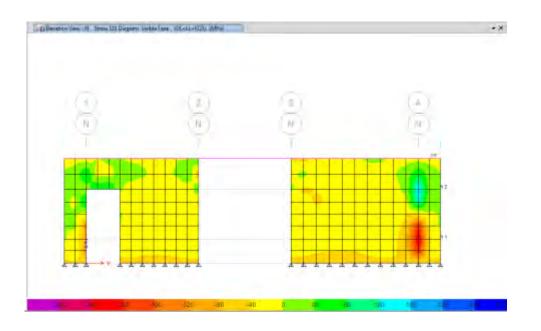
Load Case	DL+LL+EQY	DL+LL-EQY	0.7DL +EQY	0.7DL -EQY	Max	Check
Compressive Stress: (SII)	0.21	0.44	0.21	0.44	0.44	ok
Tensile Stress: (SII)	0.38	0.23	0.39	0.22	0.39	Not ok
Shear Stress: (S12)	0.22	0.28	0.21	0.26	0.28	Not ok

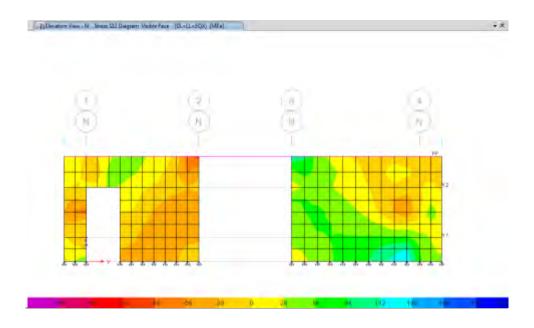


<u>Grid N-N</u>


Out of plane Stress Analysis (Vertical Direction)

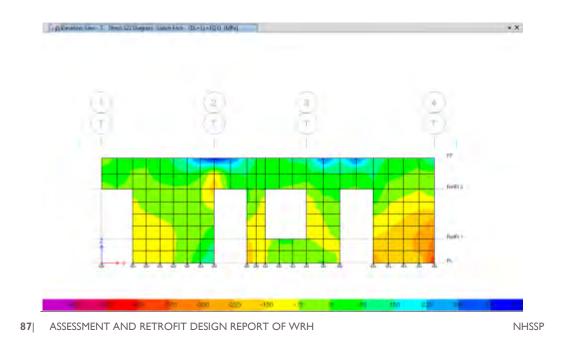
Load Case	DL+LL+EQX	DL+LL-EQX	0.7DL +EQX	0.7DL -EQX	Max	Check
Compressive Stress: (S22)	0.95	0.85	0.73	0.72	0.95	ok
Tensile Stress: (S22)	0.38	0.36	0.45	0.44	0.45	Not ok
Shear Stress: (S23)	0.12	0.12	0.12	0.12	0.12	ok

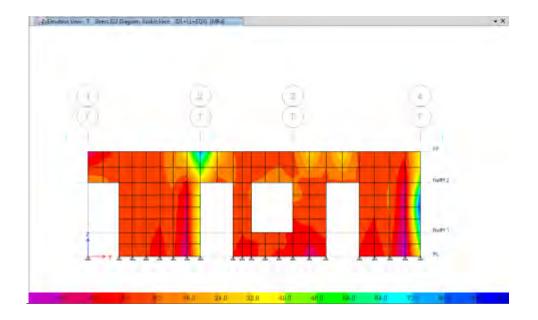

85| ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH


NHSSP

Out of plane Stress Analysis (Horizontal Direction)

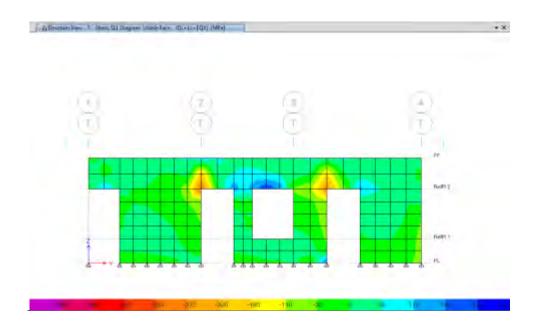
Load Case	DL+LL+EQX	DL+LL-EQX	0.7DL +EQX	0.7DL -EQX	Max	Check
Compressive Stress: (SII)	0.28	0.25	0.27	0.25	0.28	ok
Tensile Stress: (SII)	0.24	0.23	0.24	0.24	0.24	Not ok
Shear Stress: (SI2)	0.20	0.16	0.16	0.12	0.20	ok

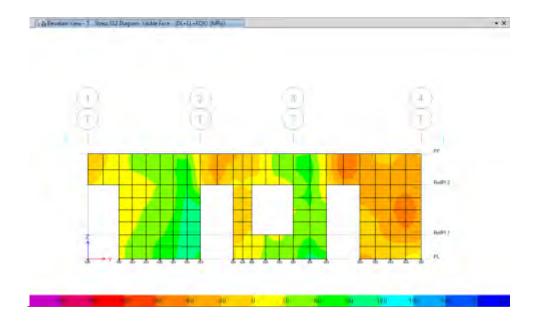




<u>Grid T-T</u>

Out of plane Stress Analysis (Vertical Direction)


Load Case	DL+LL+EQX	DL+LL-EQX	0.7DL +EQX	0.7DL -EQX	Max	Check
Compressive Stress: (S22)	0.66	0.81	0.55	0.73	0.81	ok
Tensile Stress: (S22)	0.42	0.36	0.49	0.35	0.49	Not ok
Shear Stress: (S23)	0.09	0.10	0.10	0.10	0.10	ok



Out of plane Stress Analysis (Horizontal Direction)

Load Case	DL+LL+EQX	DL+LL-EQX	0.7DL +EQX	0.7DL -EQX	Max	Check
Compressive Stress: (SII)	0.54	0.26	0.45	0.24	0.45	ok
Tensile Stress: (SII)	0.22	0.28	0.20	0.31	0.31	Not ok
Shear Stress: (S12)	0.21	0.17	0.18	0.17	0.21	Not ok

7.12 FINDINGS AND RECOMMENDATIONS

Base on the above structural analysis results, the following findings are observed:

- The drift ratio of the building complies with the codal provision. Hence building is safe in storey drift.
- Stress checks are made for maximum value of each wall panel. The building is safe in compression stress check while not safe in tensile and shear stress check for in-plane and out of plane earthquake loading.

8 RETROFIT DESIGN FOR MASONRY BUILDING

This chapter summarizes retrofitting strategies adopted and retrofitting design.

8.1 RETROFITTING STRATEGY

The goal of retrofitting is to improve the seismic behavior of structures. Different retrofit strategies have adopted for seismic retrofitting. A good retrofit scheme is the combination of three distinctive features of a structure, these are: Stiffness, ultimate resistance and deformation capacity. The three retrofit strategies are adopted for the retrofit of the hospital buildings. They are:

- Improving Regularity
- Strengthening
- Increasing Ductility

8.1.1 IMPROVING REGULARITY

Improvement of geometry, stiffness, resistance and mass distribution in plan and elevation is carried out for the structure such that regularity in the overall structure is created. This includes breakdown of complex configurations like C-type, U-type into simple configurations; addition of walls, slabs to increase stiffness and resistance; and relocation of walls for correcting load paths and uniformity of mass distribution.

8.1.2 STRENGTHENING

Strengthening of the existing structural system through introduction of new building elements, improvement in strength of the existing structural elements increases the resistance and stiffness of the structure. With this strategy, however, deformation capacity is practically unchanged.

8.1.3 INCREASING DUCTILITY

Brittle structural elements such as masonry walls have made more ductile by reinforced strips or reinforcement jacketing of the entire wall. With this strategy, the entire deformation capacity is increased while the ultimate resistance and stiffness is only slightly increased.

8.2 SELECTION OF RETROFIT STRATEGIES

In order to ensure building safety, the global and local response of the buildings need to be studied with the use of various seismic strengthening option like splint and bandage, full wall jacketing, steel bracing, addition of RC shear wall. Among the different options, the best options are applied. The different retrofit strategies adopted are as follows:

• Separation of blocks to improve configuration of buildings.

- Increasing of wall length and closing of opening to increase shear length of wall.
- Full wall jacketing with steel mesh to improve strength, ductility and stability of wall structure.
- Splint and bandage to improve localize capacity and ductility of masonry walls.
- Steel bracing to improve stability of free standing wall and parapet wall.

8.3 **RETROFIT DESIGN**

Based on the retrofitting strategies as in section 6.1, retrofitting of masonry building is designed. In this section retrofitting design of masonry structure are summarized. The detail retrofitting designs are attached in Annex.

Since there are no changes in structural system, re-modeling and analysis of building has not carried out. The retrofit designed has done to strengthening the structural deficiency observed during detail seismic assessment.

Different retrofit options are calculated and the best option as per seismic demand for different panel of walls are proposed.

Calculation of Capacity of Different retrofits Options.

Q		t _w	fy	φ	nos.	φ	nos.	S	Α	Α	σ_{ta}	σ_{ca}	τs	т	С	V	σ_t	σ _c	τ _s	fm	tc	D	d	nd	Z	Out of Plane Bending Capacity
Option	Description Jacketing	шш	N/mm ²	mm	nos.	mm	nos.	ш	mm ²	mm²/m	N/mm ²	N/mm ²	N/mm²	kN/m	kN/m	kN/m	N/mm²/ m	N/mm²/ m	N/mm²/ m	N/mm ²	mm	mm	mm	шш	шш	k N- m/m
I	Splint and Bandage (300 mm wide, 50mm thick, 3-4.75mm)	400	415	0	0	4.75	3	1.5	53	35	230	190	230	10	8	10	0.025	0.021	0.025	2.5	50	500	475	8	472	4.812
2	Splint and Bandage (300 mm wide, 50mm thick, 1-7mm+2-4.75mm)	400	415	7	Ι	4.75	2	1.5	74	49	230	190	230	14	12	14	0.035	0.029	0.035	2.5	50	500	475		471	6.677
3	Splint and Bandage (300 mm wide, 50mm thick, 2-7mm+1-4.75mm)	400	415	7	2	4.75	I	1.5	95	63	230	190	230	18	15	18	0.045	0.037	0.045	2.5	50	500	475	15	470	8.533
4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	400	415	8	0	7	3	1.5	115	77	230	190	230	22	18	22	0.055	0.046	0.055	2.5	50	500	475	18	469	10.381
5	Splint and Bandage (300 mm wide, 50mm thick, 1-8mm+2-7mm)	400	415	8	I	7	2	1.5	127	85	230	190	230	24	20	24	0.061	0.050	0.061	2.5	50	500	475	20	468	11.425
6	Splint and Bandage (300 mm wide, 50mm thick, 2-8mm+1-7mm)	400	415	8	2	7	I	1.5	139	93	230	190	230	27	22	27	0.067	0.055	0.067	2.5	50	500	475	21	468	12.467
7	Splint and Bandage (300 mm wide, 50mm thick, 3-8mm)	400	415	8	3	7	0	1.5	151	101	230	190	230	29	24	29	0.072	0.060	0.072	2.5	50	500	475	23	467	13.506
8	Splint and Bandage (300 mm wide, 50mm thick, 3-10mm)	400	415	10	3	8	0	1.5	236	157	230	190	230	45	37	45	0.113	0.093	0.113	2.5	50	500	475	36	463	20.907
9	Full Jacketing, (7mm @ 150 c/c spacing, 50mm thick)	400	415	0	0	7	I	0.15	38	257	230	190	230	74	61	74	0.184	0.152	0.184	2.5	50	500	475	59	455	33.586
10	Full Jacketing, (8mm @ 150 c/c spacing, 50mm thick)	400	415	0	0	8	I	0.15	50	335	230	190	230	96	80	96	0.241	0.199	0.241	2.5	50	500	475	77	449	43.287
	Full Jacketing, (10mm @ 150 c/c spacing, 50mm thick)	400	415	0	0	10	I	0.15	79	524	230	190	230	151	124	151	0.376	0.311	0.376	2.5	50	500	475	120	435	65.461

In plane Analysis:

Sample calculation of retrofit design for in- plane loading

X-direction loading

Wall	T	DL+LL+EQx	DL+LL-EQx	0.7DL+EQx	0.7DL-EQx	Max.	Avg.	Permissible	Charle	Retrofit Option		ble stress of fit Option	No. of	Permissible stress of	Check
-	Туре	Stress	Stress	Stress	Stress	Stress	Stress	stress of wall	Check	Description	Tensile Stress	Compressive Stress	Face	Wall after retrofit	Спеск
		N/mm ²						N/mm ²							
Pier I	Comp.	0.660	0.660	0.590	0.590	0.660	0.330	2.500	ОК	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
	Tensile	0.290	0.270	0.360	0.250	0.360	0.135	0.140	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	OK
Pier 2	Comp.	0.640	0.600	0.570	0.530	0.640	0.320	2.500	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
	Tensile	0.240	0.280	0.310	0.350	0.350	0.131	0.140	ОК	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК
Pier 3	Comp.	0.700	0.680	0.630	0.610	0.700	0.350	2.500	ОК	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
	Tensile	0.270	0.280	0.350	0.360	0.360	0.135	0.140	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	OK
Pier 4	Comp.	0.620	0.610	0.570	0.540	0.620	0.310	2.500	ОК	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
	Tensile	0.250	0.290	0.310	0.350	0.350	0.131	0.140	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	OK
Pier 5	Comp.	0.740	0.730	0.650	0.640	0.740	0.370	2.500	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
	Tensile	0.270	0.270	0.310	0.310	0.310	0.116	0.140	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК
Pier 6	Comp.	0.670	0.670	0.600	0.600	0.670	0.335	2.500	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	OK
	Tensile	0.290	0.280	0.350	0.350	0.350	0.131	0.140	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	OK
Pier 7	Comp.	0.730	0.740	0.640	0.650	0.740	0.370	2.500	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	OK
	Tensile	0.270	0.240	0.330	0.310	0.330	0.124	0.140	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	OK
Pier 8	Comp.	0.600	0.620	0.540	0.450	0.620	0.310	2.500	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	OK
FIEL O	Tensile	0.330	0.260	0.380	0.320	0.380	0.143	0.140	Not Ok	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК
Pier 9	Comp.	0.650	0.690	0.580	0.620	0.690	0.345	2.500	OK	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
FIEL 7	Tensile	0.350	0.310	0.420	0.370	0.420	0.158	0.140	Not Ok	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК
Pior 10	Comp.	0.850	0.520	0.810	0.480	0.850	0.425	2.500	ОК	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
Pier 10	Tensile	0.280	0.450	0.320	0.530	0.530	0.199	0.140	Not Ok	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК

<u>Y-direction loading</u>

Wall		DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	Max.	Avg.	Permissible stress of	Check		Retrofit Option		ible stress of fit Option	No. of	Permissible stress of	Check
T-T	туре	Stress	Stress	Stress	Stress	Stress	Stress	wall	Check	ID	Description	Tensile Stress	Compressive Stress	Face	Wall after retrofit	Check
		N/mm ²							N/mm ²							
Pier I	Comp.	0.700	0.980	0.500	0.810	0.980	0.490	2.500	OK	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
rier i	Tensile	0.530	0.220	0.630	0.290	0.630	0.236	0.140	Not Ok	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК
Pier 2	Comp.	0.660	0.630	0.570	0.510	0.660	0.330	2.500	OK	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
rier z	Tensile	0.160	0.270	0.240	0.360	0.360	0.135	0.140	OK	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК
Pier 3	Comp.	0.510	0.660	0.420	0.590	0.660	0.330	2.500	OK	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
FIEL 2	Tensile	0.340	0.150	0.410	0.240	0.410	0.154	0.140	Not Ok	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК
Pier 4	Comp.	0.460	0.810	0.390	0.750	0.810	0.405	2.500	OK	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	2.591	ОК
rier 4	Tensile	0.470	0.210	0.530	0.270	0.530	0.199	0.140	Not Ok	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	0.055	0.046	2.000	0.251	ОК

Out of plane Analysis:

Sample calculation of retrofit design for out of plane loading

Horizontal bending

Wall	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	Max. Moment	Moment MII		Retrofit Option	No. of face	Moment Capacity	Check
	kN-m/m					kN-m	ID	Description		kN-m	
-	5.952	4.223	6.236	4.558	6.236	4.677	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	2.000	20.761	ОК
2-2	2.831	5.130	2.839	4.535	5.130	3.848	7	Splint and Bandage (300 mm wide, 50mm thick, 3-8mm)	2.000	27.012	ОК
3-3	9.795	7.239	9.748	7.286	9.795	7.346	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	2.000	20.761	ОК
4-4	5.279	3.340	4.280	2.945	5.279	3.959	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	2.000	20.761	ОК

NHSSP

ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

Wall	DL+LL+EQx	DL+LL-EQx	0.7DL+EQx	0.7DL-EQx	Max. Moment	Moment MII	Moment MII Retrofit Option		No. of face	Moment Capacity	Check
			kN-m/m			kN-m	ID	Description		kN-m	
K-K	5.263	5.057	4.473	4.424	5.263	3.947	9	Full Jacketing, (7mm @ 150 c/c spacing, 50mm thick)	1.000	33.586	ОК
L-L	4.538	4.681	4.542	4.677	4.681	3.511	8	Splint and Bandage (300 mm wide, 50mm thick, 3-10mm)	2.000	41.815	ОК
M-M	6.222	6.667	6.264	6.625	6.667	5.000	7	Splint and Bandage (300 mm wide, 50mm thick, 3-8mm)	2.000	27.012	OK
N-N	6.706	6.377	6.637	6.447	6.706	5.030	7	Splint and Bandage (300 mm wide, 50mm thick, 3-8mm)	2.000	27.012	OK
0-0	5.946	6.767	6.064	6.649	6.767	5.075	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	2.000	20.761	OK
Q-Q	4.963	6.265	5.920	6.255	6.265	4.699	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	2.000	20.761	OK
S-S	6.938	6.461	6.826	6.573	6.938	5.204	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	1.000	10.381	OK
T-T	8.889	5.329	8.075	6.143	8.889	6.667	4	Splint and Bandage (300 mm wide, 50mm thick, 3-7mm)	2.000	20.761	OK
U-U	3.744	3.270	3.579	3.352	3.744	2.808	9	Full Jacketing, (7mm @ 150 c/c spacing, 50mm thick)	3.000	100.758	OK

Check for Shear Stresses

Shear capacity of Reinforced Masonry Wall with vertical and horizontal reinforcing steels calculated as follows:

 $F_v = F_{vm} + F_{vh} + F_{vv}$

Where,

 F_{vm} : Shear strength of URM (f _{vm} *A)

- $F_{vh:}$ Shear resistance due to horizontal bars ($\sum n^*T_b$)
- F_{vv} : Shear resistance due to vertical bars(0.806*nd^2 \sqrt{(f_c f_s)}
- f_{vm}: Shear stress of masonry
- A: Cross sectional area of wall
- n: Number of horizontal (or vertical) reinforcing bars
- T_b: Tensile strength of one bar
- d: Diameter of reinforcing bar
- f_c: Allowable compressive strength of the embedding mortar or grout
- fs: Allowable tensile stress in reinforcing bar

Sample calculation of retrofit design for shear stresses

			A. She	ar Stres	s induced in wall		B. Shear strengt masonry wall as pe shear test re	er in place			zevic,	Earth		resis	band : tant de	· /		r resistance n in the horiz	due to direct zontal band	to ho	hear re rizonta face ja	bars	in both	F. D	owel a		to vert acketin		rs in two	Total shear capacity of wall	Comparision of Shear stresses	Domon
Grid	Length of Wall (L)	f Thk. (t)	Length of opening (l _{o)}		Shear force in wall (from Analysis) Fv	Average shear stress in wall fvi	Allowable shear strength value (as per test value)	F1	N1	d1	n1	d2 n	2 fc	fy	fs	F2	N	fs	F3	N	F _{vj}	h	F4	N	d	n	č fy	fs	F5	Ft	f _{vr} f _{vi}	
	m	mm	m	m ²	kN	N/mm ²	N/mm ²	kN								kN			kN				kN		(mm)	N	Pa M	Pa Ml	Pa kN	kN	N/mm ² N/mm ²	² Text
Grid, 1-1	35.17	400	20.11	6.02	1036.16	0.172	0.210	1265.04	40	8	0	7 3	3 4	415	230	179.69	4	33.19	132.77	0	73.76	3.77	0.00	0	7.000	102	4 41	5 23	0.00	1577.50	0.262 0.172	Hence OK
Grid, 2-2	32.33	250	8.85	5.87	1324.43	0.226	0.210	1232.70	26	8	3	7 () 4	415	230	152.55	4	33.19	132.77	0	73.76	3.77	0.00	0	7.000	158	4 41	5 23	0.00	1518.02	0.259 0.226	Hence OK
Grid, 3-3	17.95	250	5.05	3.23	725.16	0.225	0.210	677.25	14	8	0	7 3	3 4	415	230	62.89	4	33.19	132.77	0	73.76	3.77	0.00	0	7.000	87	4 41	5 23	0.00	872.91	0.271 0.225	Hence OK
Grid, 4-4	35.17	400	17.70	6.99	1243.69	0.178	0.210	1467.48	40	8	0	7 3	3 4	415	230	179.69	4	33.19	132.77	0	73.76	3.77	0.00	0	7.000	118	4 41	5 23	0.00	1779.94	0.255 0.178	Hence OK
Grid, K-K	8.85	400	0.00	3.54	698.76	0.198	0.210	742.98	0	8	0	7 () 4	415	230	0.00	0	33.19	0.00	1	73.76	3.77	278.08	1	8.000	60	4 41	5 23	0 117.20	1138.26	0.322 0.198	Hence OK
Grid, L-L	6.55	250	0.00	1.64	272.22	0.166	0.210	343.88	8	10	3	7 () 4	415	230	73.34	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	45	4 41	5 23	0.00	549.99	0.336 0.166	Hence OK
Grid, M-M	5.32	400	0.00	2.13	237.39	0.112	0.210	446.46	8	8	3	7 () 4	415	230	46.94	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	37	4 41	5 23	0.00	626.17	0.295 0.112	Hence OK
Grid, N-N	9.23	400	0.00	3.69	626.88	0.170	0.210	775.07	12	8	3	7 () 4	415	230	70.41	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	63	4 41	5 23	0.00	978.25	0.265 0.170	Hence OK
Grid, O-O	5.75	400	0.00	2.30	395.52	0.172	0.210	482.58	8	8	0	7 3	3 4	415	230	35.94	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	40	4 41	5 23	0.00	651.29	0.283 0.172	Hence OK
Grid, P-P	5.75	400	0.00	2.30	49.21	0.021	0.210	482.58	4	10	3	7 () 4	415	230	36.67	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	40	4 41	5 23	0.00	652.02	0.284 0.021	Hence OK
Grid, Q-Q	4.15	250	0.00	1.04	174.69	0.169	0.210	217.61	4	8	0	7 3	3 4	415	230	17.97	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	29	4 41	5 23	0.00	368.35	0.355 0.169	Hence OK
	6.30	400	0.00	2.52	438.61	0.174	0.210	529.20	8	8	0	7 3	3 4	415	230	35.94	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	43	4 41	5 23	0.00	697.91	0.277 0.174	Hence OK
Grid, R-R	1.60	400	0.00	0.64	38.84	0.061	0.210	134.40	4	10	3	7 () 4	415	230	36.67	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	12	4 41	5 23	0.00	303.84	0.475 0.061	Hence OK
Grid, S-S	10.45	400	0.00	4.18	694.85	0.166	0.210	877.38	12	8	0	7 3	3 4	415	230	53.91	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	71	4 41	5 23	0 0.00	1064.06	0.255 0.166	Hence OK
Grid, T-T	12.24	400	5.08	2.87	438.55	0.153	0.210	601.78	12	8	0	7 3	3 4	415	230	53.91	4	33.19	132.77	0	73.76	3.77	0.00	0	4.750	49	4 41	5 23	0.00	788.45	0.275 0.153	Hence OK
Grid, U-U	13.84	400	4.99	3.54	515.14	0.146	0.210	743.40	0	8	0	7 () 4	415	230	0.00	0	33.19	0.00	1	73.76	3.77	278.08	1	8.000	60	4 41	5 23	0 117.20	1138.68	0.322 0.146	Hence OK

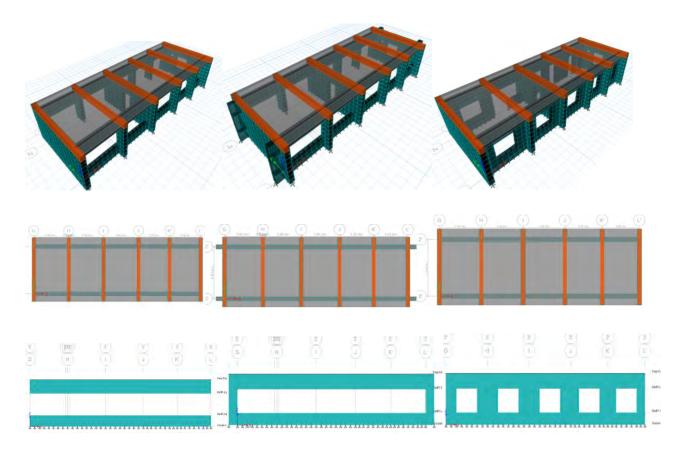
8.4 CONCLUSION AND RECOMMENDATION

The following retrofit options are recommended.

Grid ID	Retrofit Option				
Grid K-K	Full jacketing with 7mm diameter bar @ 150mm c/c spacing, single face.				
	Vertical bars: 7mm diameter, 150mm c/c spacing				
	Horizontal bars: 7mm diameter, 150mm c/c spacing				
Grid L-L	Vertical Splint: 300mm wide, 50mm thick, 3-10mm bar, both side				
	Horizontal bandage: 300mm wide, 50mm thick, 3-7mm bar, both side				
Grid M-M and	Vertical Splint: 300mm wide, 50mm thick, 3-8mm bar, both side				
N-N	Horizontal bandage: 300mm wide, 50mm thick, 3-7mm bar, both side				
Grid O-O, Q-Q,	Vertical Splint: 300mm wide, 50mm thick, 3-8mm bar, both side				
S-S and T-T	Horizontal bandage: 300mm wide, 50mm thick, 3-7mm bar, both side				
Grid I-I ,4-4	Pier: Full jacketing with 7mm diameter bar @ 150mm c/c spacing, both faces.				
	Horizontal bandage: 300mm wide, 50mm thick, 3-7mm bar, both side				
Grid 2-2	Vertical Splint: 300mm wide, 50mm thick, 3-8mm bar, both side				
	Horizontal bandage: 300mm wide, 50mm thick, 3-7mm bar, both side				
Grid 3-3	Vertical Splint: 300mm wide, 50mm thick, 3-7mm bar, both side				
	Horizontal bandage: 300mm wide, 50mm thick, 3-7mm bar, both side				

9 NHSSP'S RESPONSE ON REVIEWERS' COMMENTS & SUGGESTION

The following are the NHSSP's response on Comments/Suggestion from Peer Reviewer on the consultation meeting conducted on 19th June 2018 at NHSSP office & during Field Visit on June 7-9, 2018


Reviewer's Comments # I :

In the Pharmacy Block,

• Check for existing building without deducting opening as an alternative option adding buttress in longitudinal direction and/or bands for shear transfer.

NHSSP Response:

Three different cases -1) Existing building, 2) Building with buttress in longitudinal direction and seismic bands, and 3) building with deducting of opening and seismic bands as shown in the following figures.

Case – I: Existing Building Case-II: Building with buttress & bands Case-III: Building with opening reduction

The following table presents the comparison of the results.

Description	Case - I	Case –II	Case -III	Remarks
Shear strength of the masonry w	<u>all (Grid 3-3, outer</u>	<u>long wall)</u>		
Average Shear Stress in wall	0.472 N/mm ²	0.365 N/mm ²	0.170 N/mm ²	
	0	0.000 1 4/1111		
Allowable Shear Stress value (as	0.210 N/mm ²	0.210 N/mm ²	0.210 N/mm ²	
per test value)				
1 /				
	Unsafe	Unsafe	Safe	
Shear resistance due to direct te	nsion in horizontal	band		
	1	1		
Number of Horizontal Bands		3×2 = 6	3×2 = 6	
No. of reinforcement		# 4 - 10 mm	# 3 - 7 mm	
INO. OF remorcement		# 4 - 10 mm	# 3 - 7 mm	
Tensile capacity of each band		39.27 KN	21.25 KN	
(Diameter bar)				
Total shear capacity of the wall		773.20 KN	941.50 KN	
. ,				
Shear Stress		0.303 N/mm ²	0.277 N/mm ²	
		< 0.365 N/mm ²	> 0.170 N/mm ²	
		(Unsafe)	(Safe)	

From above table, it is cleared that Case-II – addition of four number of buttress in longitudinal direction with seismic bands with 4 nos of 10mm dia bar is not safe in shear stress check. However, Case –III – reducing opening satisfies the shear demand. Based on these results, it is recommended the Case-III – reducing opening with necessary seismic bands for retrofitting solutions.

Reviewer's Comments # 2 :

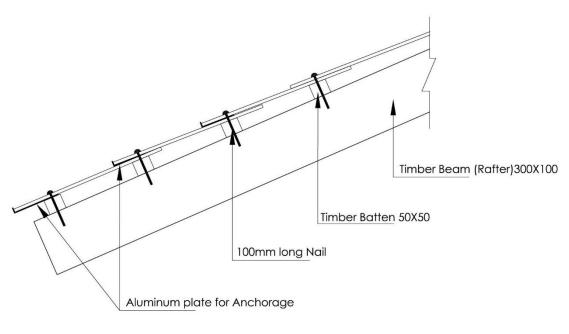
In the Maternity Block:

• Load path correction

NHSSP Response: It has already corrected

- Horizontal Diaphragm connection
- NHSSP Response: Diaphragm beams have already provided 99 ASSESSMENT AND RETROFIT DESIGN REPORT OF WRH

• Gable wall framing


NHSSP Response: Already provided

• Provision of timber test

NHSSP Response: Already included in BOQ.Will test during construction

• Slate roof anchoring at least three rows at bottom

NHSSP Response: Anchoring of slate at roof are proposed as shown in the following figure.

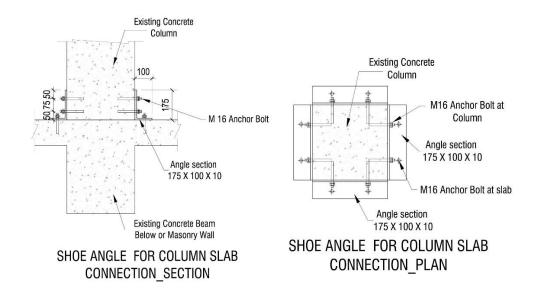
Slate Anchorage Detail Scale: 1:10

NHSSP Response: Already provided

• Expose steel should be covered with concrete or zinc rich paint

NHSSP Response: Included in design and specification

• No need to reduce gable height after proper framing

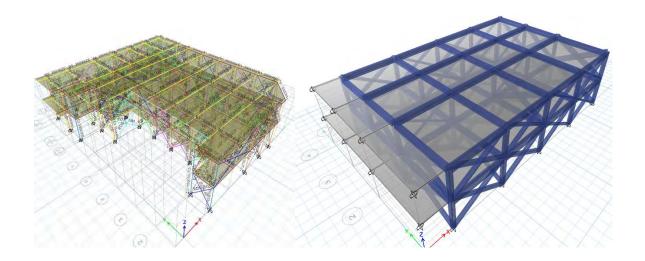

Reviewer's Comments # 3:

In Dental Block:

• Check connection of first floor column with slab/beam & request for a deep scanner for check of the connection

• Metal shoe as an option for beam column joints or Concrete confining the wall below the column

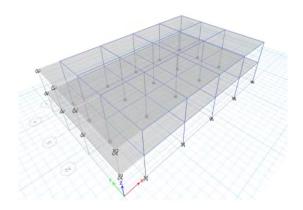
NHSSP Response: As per suggestion, a metal shoe is included as shown in the following figures


Reviewer's Comments # 4 :

In RCC Frame Building – CT Scan & ENT block

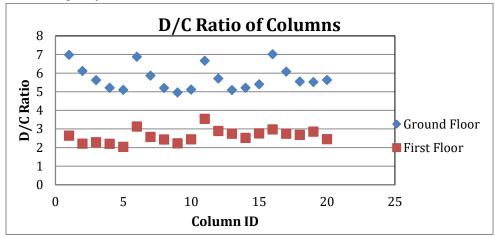
- Check for column jacketing for CT scan block
- Consider stiffness of infill masonry wall in frame building analysis

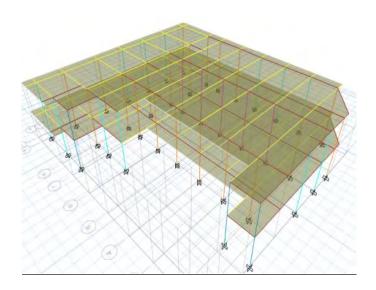
NHSSP Response:


As per reviewers' suggestion, both the RC Frame buildings are analyzed considering stiffness of infill masonry wall. As recommended by IS 1893 2015, the Equivalent Diagonal Strut method is used in order to analyze infill masonry wall as shown in the following figures.

The comparison of the analysis results of EDSM and the bare famed analysis method are presented in the following.

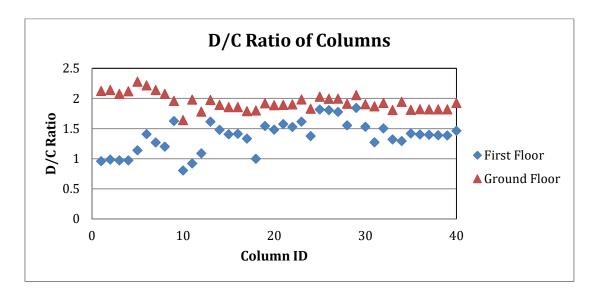
CASE - I: Without consideration of infill masonry


ENT BLOCK


1) Drift Check

Storey	Elevation		splacement m)	Storey	drift (%)
	m	X Dir'n	Y Dir'n	X Dir'n	Y Dir'n
Storey2	7.240	56.302	72.177	0.595	0.747
Storey I	3.600	34.987	45.430	0.956	1.241
Base	0.000	0.000	0.000	0.000	0.000

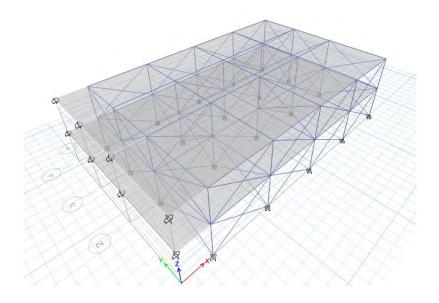
2) Demand Capacity Ratio Check


CT SCAN BLOCK

1) Drift Check

Storey	Elevation	Storey Displ	acement (mm)	Storey drift (%)			
	m	X Dir'n	Y Dir'n	X Dir'n	Y Dir'n		
Storey2	7.000	16.254	23.512	0.193	0.276		
Storeyl	3.500	9.501	13.842	0.271	0.395		
Base	0.000	0.000	0.000	0.000	0.000		

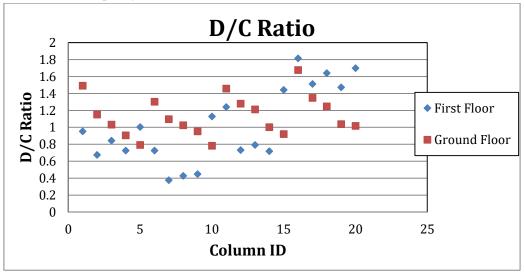
2) Capacity Demand Ratio Check

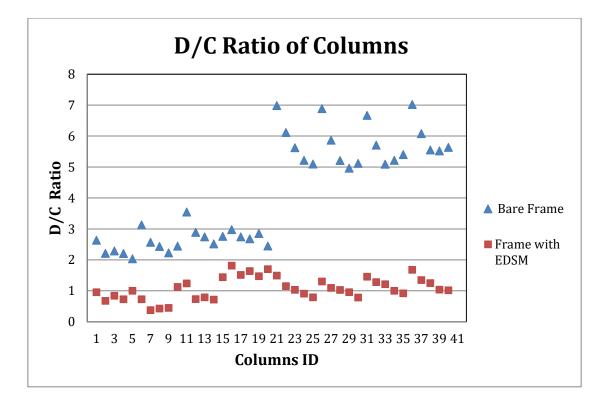

3) Check for Seismic Gap Between ENT Block and CT Scan Block

	CT Scan	ENT		
Total Displacement	23.512 mm	56.302 mm		
Response reduction Factor (R)	3			
Gap required:	(23.512+56.30	2)*3 = 239.44 mm		

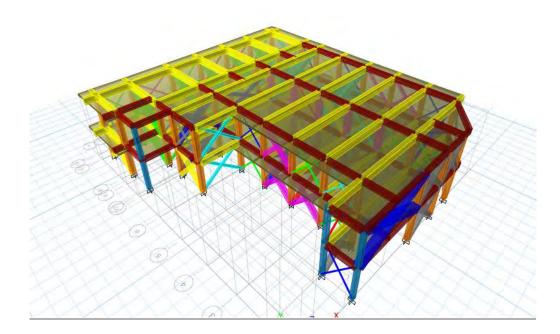
The seismic gap required between CT scan and ENT blocks is 240mm and existing gap between two blocks is about 25mm. Thus the lateral stiffness building should be increased to control lateral displacement in order to control possible seismic.

Case II: Consideration of infill masonry (Equivalent Diagonal Strut method)

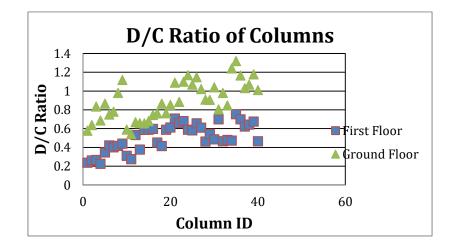

ENT BLOCK

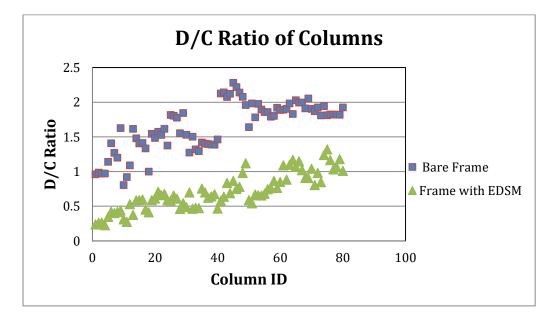


1) Drift Check


Storey	Elevation	,	splacement m)	Storey	drift (%)
	m	X Dir'n	Y Dir'n	X Dir'n	Y Dir'n
Storey2	7.240	7.971	16.670	0.098	0.137
Storeyl	3.600	4.459	11.766	0.122	0.321
Base	0.000	0.000	0.000	0.000	0.000

2) Demand Capacity Ratio Check


CT SCAN BLOCK



3) Drift Check

Storey	Elevation	Storey Displ	acement (mm)	Storey drift (%)			
	m	X Dir'n	Y Dir'n	X Dir'n	Y Dir'n		
Storey2	7.000	9.946	4.923	0.103	0.063		
Storeyl	3.500	6.338	2.716	0.181	0.078		
Base	0.000	0.000	0.000	0.000	0.000		

4) Capacity Demand Ratio Check

5) Check for Seismic Gap Between ENT Block and CT Scan Block

	CT Scan	ENT
Total Displacement	4.923 mm	7.971 mm

Response reduction Factor (R)	3
Gap required:	(4.923+7.971)*3 = 38.682 mm

The seismic gap required between CT scan and ENT blocks is 38.682mm and existing gap between two blocks is about 25mm.Thus, the lateral stiffness of these buildings should be increased to control lateral displacement for seismic pounding affects.

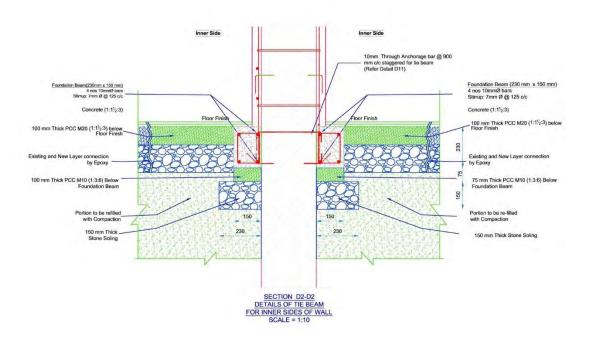
Based on these results, shear wall with column jacketing is proposed as a retrofitting solution to increase lateral stiffness for controlling lateral displacement

Reviewer's Comments # 5:

General: (For all buildings)

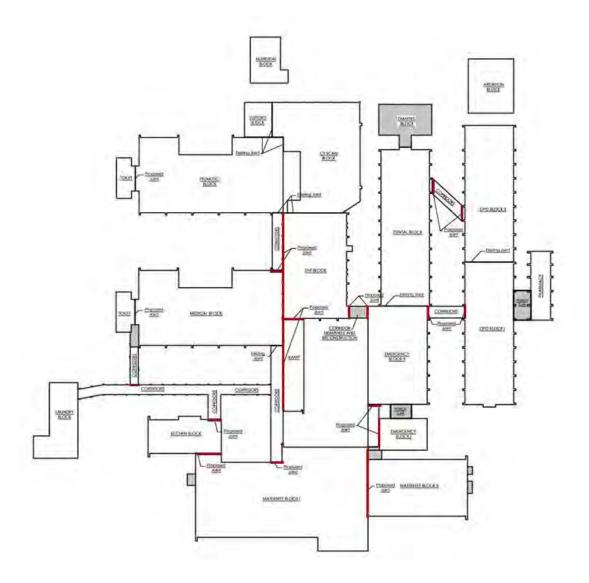
- Agree on opening vertical jammer at new construction of walls
- Steel jacketing of stone columns at corridors

NHSSP Response:


The steel jacketing has designed and proposed for stone masonry columns at corridors as shown in the following figures

TYPICAL STONE COLUMN STEEL JACKETING DETAIL SCALE:1:10

Through anchorage for tie beam @ interval of Im spacing <u>NHSSP Response</u>:


The through anchorage has included for tie beam and other bands as shown in the following figures

• Separation of blocks from one another

NHSSP Response:

It has already incorporated. The proposed seismic gap (in red) and the existing gap are as shown in the following figure

Ramp:

• Agree on the proposed plan to demolish of roof cover slab and replace place with light steel structure and column jacketing upto slab level

Visitor Block:

• Agree on the proposed plan to demolish visitor block attached with CT scan block and Pediatric block

Reviewer's Comments # 6:

 Make code uniform for all type of buildings (follow either NBC or IS for both RC or Masonry building)

NHSSP Response:

As per suggestion, the RC framed building are analyzed using NBC to make codal uniformity with masonry buildings. Some of the check - torsional irregularity, soft storey, mass irregularity, and eccentricity, which are not available in NBC are assessed using IS1893:2002& IS I588.2013. The analysis reports of these buildings are included in the report

Reviewer's Comments # 6:

Write executive summary defining intervention applied for each building. (Including Reviewer comments and suggestion)

NHSSP Response:

As per suggestion an executive summary is included in the report.

10 ANNEXES

- Annex A: Non Destructive Test Report
- Annex B: Geo technical Investigation Report
- Annex C: Load Calculations
- Annex D: Calculation of Retrofit Design
- Annex E: Non Structural Components
- Annex F: Design Drawing